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Contents 
• Applications of spectral clustering 

• Mainly computer vision (image, shape and motion segmentation) 

 

• Practical issues 

• Parameter tuning 

• Number of clusters 

• Large affinity matrices 

• K-means modifications (Mahalanobis vs spherical) 

 

 

• Spectral clustering extensions 

• Multi-way affinities 

• Multiple affinities 
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Some basic applications 
• Image segmentation  

• Image clustering 

• Motion segmentation 

• Shape extraction 

• Point correspondence 

• Anywhere else there is need for segmentation or clustering 

 

 

• General principle: 

• Determine what needs to be clustered/segmented – feature type 

• e.g. pixels, points of interest, regions, or whole images 

• Extract an appropriate descriptor with a distance measure 

appropriate for the problem 

• Create affinity matrix 

• Carry out spectral clustering 
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Simple image segmentation 
• 100x75 colour image 

• Features: RGB pixels in R3 

 

• Distance:                                   ,  Affinity: 

• 7500x7500 affinity matrix  (too large!  Ask for the k largest eigenvalues) 

• Spectral clustering with 4 clusters    
 

• SC at the pixel level will not scale well for larger images.  

• And of course simple RGB distance criterion will fail for more complicated 

images 

D(i; j) = jjxi ¡xjjj2 A(i; j) = exp(¡D(i; j)2=¾2)
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Image clustering 
• Cluster based on texture property (e.g. frequency). One can also cluster on object-type 

 

• Database of N images 

• For each image extract a holistic texture-type feature (e.g. Gist, Weibull parameters, a 

distribution of texture variance etc) 

 

• Define a pairwise distance criterion in the embedding space  (for Weibull it is R2) 

• Natural choice Rao distance between two Weibulls 

• Or a divergence measure between distributions 

 

• Build NxN affinity matrix 

• Spectral clustering with k clusters 

• The choice of k is usually arbitrary  
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Simple motion segmentation 
• Extract N sparse features (e.g. Harris points p) and determine correspondence across 

image F frames (e.g. KLT tracker) 

• Define a pairwise affinity. For example from the local pairwise distances…. 

 

 

 ….the usual affinity 

 

• Build NxN affinity matrix and do spectral clustering 

 

• Simple pairwise affinities will only work well for 2D translational models.  

• For robust segmentation we need to look for 3D motion = multi-way affinities in 2D 

 

D(i; j) =
P

t jjpi ¡ pjj j2t D(i; j) = maxtDt(i; j) Dt(i; j) = D jjpi ¡ pjj j2t=ct

A(i; j) = exp(¡D(i; j)2=¾2)
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Simple shape extraction 
• Really one has to use multi-way affinities here (we will discuss that later) 

 
• Extract point features in the image (e.g. points of interest) 

• Decide on a geometric shape model (e.g. conics, lines, contours or something more 

advanced) 

• If the model needs 𝒅 points, take at least 𝒅 + 𝟏 and fit the model 

• The residual is the affinity. But a 𝒅 + 𝟏-wise affinity 

• Convert to pairwise affinity matrix 𝑨(𝒊, 𝒋) (we will discuss that later) 

• Do spectral clustering 

 

• How does it compare with RANSAC type methods? 

 

 

 

 

 

 

 
 

 



Computer Vision Laboratory 

Parameter tuning 
• The kernel parameter(s) are amongst the most important parameters 

in SC 

• They supress or enhance affinities between points 

• Essentially “compacting” or “stretching” clusters 

• Can make a big difference in clustering quality (depending on 

data complexity and kernel choice) 

 

• Choice of kernel parameter is data dependent – choosing a fixed 

value is not recommended for different datasets 

 

• Generally we have to search for them, although there are certain fixed 

choices 

 

• Global vs local 

 
• Here we will deal with single parameter kernels (i.e. Gaussian and ¾, 

kNN and k, etc) 
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Parameter tuning : An example 
An easy problem: Two well 

separated clusters 

 

 

 

 

 

 
• We take 50 equidistant ¾ 

samples from [0.1,…,10] 

 

• At each sample, we calculate 

the affinity matrix and perform 

spectral clustering 

 

• We then evaluate the ground 

truth clustering error 

 

 

 

 

 

 

 

 

 

 

 

 

 

A(i; j) = exp(¡ jjxi¡xjjj2
¾2

)

¹ 1 = (2 ; 3 ) ; § 1 = [1 ; 0 ; 0 ; 1 ]

¹ 2 = (10 ; 10 ) ; § 2 = [1 ; 0 ; 0 ; 1 ]
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Parameter tuning : An example 



Computer Vision Laboratory 

Parameter tuning : An example 



Computer Vision Laboratory 

Parameter tuning : An example 

No problem choosing ¾ in this case 
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Parameter tuning : An example 
A harder problem: Two proximal 

clusters of different shapes 

 

 

 

 

 

 
• We take 50 equidistant ¾ 

samples from [0.1,…,25] 

 

• At each sample, we calculate 

the affinity matrix and perform 

spectral clustering 

 

• We then evaluate the ground 

truth clustering error 

 

 

 

 

 

 

 

 

 

 

 

 

 

¹ 1 = (0 ; 7 :5 ) ; § 1 = [1 ; 0 ; 0 ; 1 ]

¹ 2 = (4 ; 0 ) ; § 2 = [45 ; ¡ 25 ; ¡ 25 ; 14 ]

A(i; j) = exp(¡ jjxi¡xjjj2
¾2

)
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Parameter tuning : An example 
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Parameter tuning : An example 

 
How do we choose ¾ in this case? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Very narrow 

basin 

We cannot evaluate 

this curve in practice 
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Parameter tuning 

• Search for a global ¾ which gives the “best” clusters [Ng et al] 

• What is a good cluster?  

• Recall cluster quality measures from Lecture 1 

 

• Either use generic cluster measures 

 

• Or use a problem-specific cluster quality measure 

 
• What about a fixed data dependent ¾? 

• For Gaussian affinities and isotropic clusters use                     

                               where     

 

• But not as good as [Ng et al] approach 

 

¾ = D

N
1
k

D =max jjxi ¡xjjj
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Parameter tuning : Example revisited 
A harder problem: Two proximal 

clusters of different shapes 

 

 
• We take 50 equidistant ¾ 

samples from [0.1,…,25] 

 

• At each sample, we calculate 

the affinity matrix and perform 

spectral clustering 

 

• But now after each clustering we 

evaluate a quality measure 

 

• We then evaluate the ground 

truth clustering error 
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Generic quality criterion        K-means distortion error 

 

Parameter tuning : Example revisited 

P
k

i= 1

P
N

x j 2C i
jjx j ¡ ¹ i jj2

Global minimum found.  

But very narrow.  

We might miss it 

This local minimum is not 

good. Decorrelated with 

the error curve 
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¹̂ 1 = (0 ; 5 ) ; §̂ 1 = [1 ; 0 ; 0 ; 1 ]

 

Parameter tuning : Example revisited 

• Can we do something better? 

• Yes. Use a problem specific measure 

• Example of existing problem assumption 

• Say we know that there should be an isotropic cluster around (0,5) 

• Set         

 

 
 

• Then calculate Bhattacharyya distance 

between two multivariate Gaussians 

 

 

 

• Remember labels might change!! So set 

quality as                         where  

 

 

• The estimates for each cluster at each 

iteration are given by  

 

m in (B 1 ; B 2 )

B 1 = B (p 1 ; p̂ ) B 2 = B (p 2 ; p̂ )

p̂

p 1

p 2

P = (§ 1 + § 2 )= 2

¹ = m ea n (X ) § = cov (X )

B (p 1 ; p 2 ) =
1

8
(¹ 1 ¡ ¹ 2 )

T
P

¡ 1
(¹ 1 ¡ ¹ 2 ) +

1

2
ln

d e t(P )p
d e t(§ 1 )d e t(§ 2 )
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Parameter tuning : Example revisited 

Problem specific measure:  

• Now the two curves 

are better correlated. 

 

• The more specific the 

assumptions the more 

correlation 

 

 

But minimum still narrow 



Computer Vision Laboratory 

Parameter tuning 

• Ideally we would like to have a clustering quality criterion 

that behaves exactly as the ground truth clustering error 

(i.e. correlated) 

• Many choices. Some are better than others. 

 

• In most cases the generic solutions will work ok, but really 

one should use a problem specific 

 

• Clustering quality criteria = at the cluster level 

• Other problem specific information at the data point 

level it should go to the affinity matrix 

 

• Unfortunately it is not always possible to come up with 

problem specific quality measures 
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Parameter tuning 

 

• Use your favourite optimisation method or just 

brute force. Might become very expensive for 

multiple-parameter kernels 

 

 

• Error surface non-smooth and local minima 

• Due to the distributions in eigen-space and k-

means behaviour 
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Improving the problem 

• Of course the assumption is that there is a good global 

minimum in the clustering error function in the first place 

 

• We would also like a wide basin around the minimum 

 

• What can we do? 
• Generic way (Enhancement: local ¾, the Q matrix) 

• Problem specific way (Kernel choice + going to 

multiway affinities) 

• Incorporate additional info (Multiple affinities, prior 

information = constrained spectral clustering) 
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Improving the problem: Local ¾ 
• Different clusters have different local statistics 
• A single, global ¾ might not work well of all data 

 

• [Zelnik-Manor, Perona] Instead build the affinity matrix 

 

 

 

 

• Allows self-tuning from the local statistics of the neighbourhood 

around the points xi, xj 

 

• Chose                                where xK is the K-th neighbour of point xi 

 

• We can have a fixed K or do a similar search as [Ng et al] over K 

 
• Obviously a data dependent ¾ must be selected from the original 

distances BEFORE we build an affinity matrix 

 

 

 

A(i; j) = exp(¡ jjxi¡xjjj2
¾i¾j

)

¾i = d(xi; xK)
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Parameter tuning : Example revisited 
A harder problem: Two proximal 

clusters of different shapes 

 

 

 

 
• We calculate one affinity matrix 

with local ¾ instead and perform 

spectral clustering 

 

• [Zelnik-Manor, Perona] suggest K=7 
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Improving the problem: Local ¾ 
Results 
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Searching for the local ¾ 
A harder problem: Two proximal 

clusters of different shapes 

 

 
• We take 50 equidistant K-NN 

samples from [2,…,52] 

 

• At each sample, we calculate 
the affinity matrix with the local ¾ 

and perform spectral clustering 

 

• But now after each clustering we 

evaluate a quality measure 

 

• We then evaluate the ground 

truth clustering error 
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Improving the problem: Local ¾ 
Results 

 

 

 

 

 

 

 

 

 

 

 

 

 
• In general the use of an appropriate local ¾ can improve the problem by 

finding clustering solutions not available to a global ¾ and with a wider 

basin 

 

 

 

 

 

 

 

 

 

 

 

 

 



Computer Vision Laboratory 

Improving the problem: The Q matrix 
 

 

 

 

 

The basic algorithms described in the last lecture 

can be enhanced in various ways 

In the following: 

 

• Assume that self-affinities are = 1 

• Diagonal entries in A are = 1 
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An observation 

• An observation: 
– adding noise to A causes noise to appear both in the 

eigenvalues of A and in the corresponding eigenvectors 

• This is the case also for D and L 

• For the eigenvalues: 
– Eigenvalues that should be = 0 become  0 

– Such eigenvalues can mix with those that should 
be > 0 but are relatively small 

• For the eigenvectors: 
– The space spanned by the k largest eigenvectors is not 

exactly the space spanned by the indicator vectors 
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Rank k-approximation 

• We know that A should have rank k 

• In Frobenius norm, the best approximation of 

A with a rank k matrix is given by 

 

  Arank k = U § UT 

 

 U = n £ k matrix of normalized eigenvectors of A 

 § = k £ k diagonal of the k largest eigenvalues 
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Rank k-approximation 

• Arank k is the “closest” affinity matrix relative to 

A that has the correct rank 

• Arank k is not a “true” affinity since entries may 

be negative 

• Set negative values to zero 

– This operation changes eigenvalues in Arank k and 

the rank k-constraint is no longer valid 

– In practice, only small adjustments to eigenvalues 

occur if the negative values are small 
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The matrix Q 

• As a representation of Arank k we can even 

use the matrix 

 

  Q = U UT 

 

• This is a projection operator onto the 

space spanned by the k largest 

eigenvectors 
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The matrix Q 

• Q is the same as Arank k but without the § 

• In the ideal case: § contains n1, n2, ... 

• In the ideal case, removing § causes 

elements in Q to be either 

– 1/ni in the blocks in the diagonal 

– 0 outside the blocks 
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The matrix Q 

• From a graph with affinity A, and k clusters 

 

• Form Q = U UT  

• Suppress negative affinities in Q to zero 

• Q can be used directly for segmentation by 
thresholding 

 

• Threshold should be chosen carefully so it gives 
the desired number of clusters 

 

• Reduces the “eigen-noise” 
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A numerical example 

A 

Q 

Row space of UA 

Row space of UQ 
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Improving the problem 

• Limitations of a single affinity matrix 

• We need additional info (if available) 

• Multiple-affinity matrices 

 

• This only makes sense if the solution can be given by either affinity 

matrix in the perfect, noise-free case 

• Intersection of solution space 

• Correlation of information in the affinity matrices 

 

• Use basic fusion approaches 

• Use more advanced methods e.g. co-regularisation 

• Use information theoretic criteria for fusion 
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Improving the problem: Multi-view 

 Spectral Clustering 

In some cases: 

• We can form affinities from one and the same 
data set in multiple ways 
– Different features 

– Different distance functions 

– Different kernel functions 

– ... 

• We get affinity matrices A1, A2, ... 

• All of them approximately describing the 
same graph segmentation problem 
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Improving the problem: Multi-view 

 Spectral Clustering 

• We want to do clustering based on all 

of A1, A2, ... 

• Referred to as multi-view spectral clustering 

 

• In the following presentation: 

– Assume two affinities A1, A2 

– Straight-forward to generalize to more affinities 

• In general, we assume that affinities in A1 and A2 

are in the [0, 1] range (i.e. normalised) 
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Improving the problem: Multi-view 

 Spectral Clustering 

• One category of approaches implies fusing A1 
and A2 into a joint affinity 

 

  Ajoint = f(A1, A2) 

 

 and do spectral clustering on Ajoint 

 

• How do we choose f  ? 

– Several options exist in the literature 
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Improving the problem: Multi-view 

 Spectral Clustering 

Hadamard product 

• Ajoint = Hadamard product of A1 and A2 

 ajoint ij = a1ij ¢ a2ij 

• The Hadamard product implies a sort of 

AND operation on the joint graph 

– Only edges that have large weights in both A1 

and A2 will be large also in the joint graph 

– Edges that have weights close to zero in one 
or both of the A1 and A2 graphs will have close 

to zero weight also in the joint graph 
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Improving the problem: Multi-view 

 Spectral Clustering 

Mean 

• Ajoint = mean of A1 and A2 

 ajoint ij = (a1ij + a2ij ) / 2 

• The mean operation implies a sort of OR 

operation on the joint graph 

– Edges that have small weights in both A1 and 

A2 will be small also in the joint graph 

– Edges that have large weights one or both of 

the A1 and A2 graphs will have large weight 

also in the joint graph 
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Improving the problem: Multi-view 

 Spectral Clustering 
Min & Max 

• The AND and OR type of operations can also be 
implemented as 
 ajoint ij = max(a1ij, a2ij ) (OR) 

 ajoint ij = min(a1ij, a2ij ) (AND) 

 

• All four approaches can be implemented in a 
very simple way and can often solve the 
problem, but 
– it depends heavily on the data which approach works 

best 

– Not obvious which of the AND or OR approach is the 
better 
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A synthetic example 

A1 

A2 

Row space of U1 

Row space of U2 
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A synthetic example 

Hadamard 
product 

Mean 
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A synthetic example 

Min 

Max 
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A real example: Motion segmentation 
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Improving the problem: Co-regularisation 

• A slightly more complicated approach is 

described by Kumar & Daumé, ICML 2011 

• Basic idea 

1. Form the normalized Laplacian of each affinity 

2. Compute the eigensystem of both 

3. Use the eigensystem of one to modify the 

affinities of the other 

4. Iterate from 1. 

• Referred to as co-regularization of A1 and A2 
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Improving the problem: Co-regularisation 

More in detail: 

• Column i of A1 or A2 ideally should be an indicator 
vector of the cluster that point i belongs to 

• Due to imperfect data, not every column has this 
character 

• For each of A1 and A2 we get a separate estimate 
the space spanned by the indicator vectors 

• Project the columns of A1 onto the space 
estimated from A2, and vice versa 

• Symmetrizise since the projection destroys the 
symmetry 
 sym(X) = (X + XT) / 2 



Computer Vision Laboratory 

Improving the problem: Co-regularisation 

• Kumar and Daumé use a slightly different 

notation for their matrices (than Luxburg): 

– A1 and A2 are the affinities 

– D1 and D2 are the corresponding degree matrices 

– L1 = D1
-1/2 A1D1

-1/2 and L2 = D2
-1/2 A2D2

-1/2 are the 

normalized Laplacians (not the same as before!) 

 

– In the ideal case: the eigenvectors of the 
largest eigenvalues in L1 and L2 span the 

space of the cluster indicator vectors 
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Kumar-Daumé algorithm: 

Initialize for k clusters 
• Lp = Dp

-1/2ApDp
-1/2,  p = 1, 2  

• Up,0 = normalized eigenvectors corresponding to the k 
largest eigenvalues of Lp 

For i = 1 to I 

1.  Qp,i-1 = Up,i-1Up,i-1
T , p = 1, 2    (a projection operator!) 

2.  S1 = sym(Q2,i-1 A1) 

3.  S2 = sym(Q1,i-1A2) 

4. Use S1 and S2 as the new affinities: compute the 
Laplacians Lp and their eigenvectors in Up 

5. End 
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Kumar-Daumé algorithm: 

• U1,I and U2,I are now co-regularized 

 

• Row normalize U1,I and U2,I 

 

• Form matrix V from U1,I and U2,I, either by 

 V = U1,I or U2,I if there is a prior on which graph is most 

informative 

 V = [U1,I  U2,I] = concatenation of rows in U1,I and U2,I 

 

• Do k-means clustering on the row space of V 
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A numerical example 
A1 

A2 

Row space of U1 

Row space of U2 

After 5 KD-iterations 

After 5 KD-iterations 
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The number of clusters (1) 

• A general problem of clustering – There as many clusters as you want to find 

• No real solution. Some heuristics. Problem dependent 

 

Spectral clustering specific: The eigen-gap 

• Find the number of clusters by analyzing the eigenvalues of the Laplacian 

matrix 

 

• The number of eigenvalues of magnitude 0 is equal to the number of clusters k.  

• This implies one could estimate k simply by counting the number of 

eigenvalues equal or close to 0.  

• This criterion works when the cluster are well separated 

 

• Eigen-gap: the difference between two consecutive eigenvalues  

 

 

• In general search for a significant increase in the eigen-gap of the eigenvalues 

arranged in increasing order 

 

 

 

¢ k = j¸ k ¡ ¸ k¡ 1 j
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The number of clusters (1) 

Von Luxburg tutorial 2007 

• The eigen-gap is not very robust to noise 

• It also needs a data dependent threshold 

 

 

? 

Noise  
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The number of clusters (2) 

• Generic criteria – Do spectral clustering and check afterwards 

 

Gap-statistics 

• Use some quality function 𝑸 (see Lecture 1) 

• We cannot use 𝑸𝒌 to determine number of clusters 𝑘 directly because 𝑸𝒌 scales 

with the number of clusters  - Needs to be normalised 

 

 

 

 

 

 

 

 

 

 

• Remember: Clustering can be done by Spectral Clustering but in this case 

Quality measure MUST be calculated in the data domain. 

 

 

 

 

• Use spectral clustering (what parameter?) to obtain k clusters 

 

𝑸𝒌 
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The number of clusters (2) 

• Generate uniform data from same domain  

• Might be a problem for high dimensional datasets or additional samples 

could be expensive 

 

• Calculate the quality function 𝑸𝑼, 𝒌 for the uniform data 

• Normalise to obtain the 𝑸𝒌/𝑸𝑼, 𝒌 

 

• The minimum of 𝑸𝒌/𝑸𝑼, 𝒌 is the number of clusters 

 

 

 

 

 

𝑸𝑼, 𝒌 
𝑸𝒌/𝑸𝑼, 𝒌 Random data over the 

same dimension and domain 
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The number of clusters (3) 

 

Information theoretic 

• Clustering = data compression 

• We minimise a quality function (e.g. distortion) 

• The quality function depends on cluster distribution and is minimised for  

 

• We need a “regulariser” to avoid overfitting 

• Minimise instead quality + regulariser (e.g. MDL) 

k = 1

E = ¡
P

(p lo g
2
(p ) ) Q k + EQ k
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Multi-way affinities 

• In some applications (e.g. shape 

segmentation) it does not make sense to 

use pairwise-affinities 

– Require a residual 

 

• For example 

– Points on a circle (¸ 4 points)  

– Motion segmentation (¸ 4, 5 or 6 points) 

– ... 
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Example, points on circles 

Affinities based 

on Euclidean 

distances 

Affinities based 

on circle fitting 

From Govindu, CVPR 

2005 
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Multi-way affinities 

• In the case that we need p points to 
determine an affinity, we form a p-
dimensional array P 

 

   P(i1, i2, ..., ip) = 

   = affinity between points (i1, i2, ..., ip) 

 

• P is referred to as a p-way array or tensor 

• We assume that P is super-symmetric 
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Multi-way affinities 

Govindu, CVPR 2005 

• Interprets the elements of P as probabilities that 

points (i1, i2, ..., ip) belong together 

• Form an n £ np – 1 matrix P by “flattening” P 

along indices 2, 3, ..., p 

• Due to the super-symmetry it does not matter 

which indices that are use for the flattening 

• Form pair-wise affinity as A = P PT 



Computer Vision Laboratory 

Multi-way affinities 

• We see that 

 

 

 

 

• Basic idea 
– If points (i,j) belong to the same cluster: there are 

many combinations of additional points c that make 
both P(i, c) and P(j, c) large ) aij > 0 

– If points (i,j) belong to different clusters: there are no 
or few combinations of additional points c that make 
both P(i, c) and P(j, c) large ) aij ¼ 0 

aij =
X

c2C
P(i; c)P(j; c)

C = all combinations of p¡ 1 indices in the range [1, n]
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Multi-way affinities 

• Computing first P, and then A = P PT becomes 
very expensive for large n and p 

• There are np – 1 elements in C 

• Simplification: 
– Choose C’ as a subset of C 

– C’ must be of reasonable size: not too small/large 

– With q as the number of combinations in C’ 

– Corresponds to a subsampling of the columns in P 

• For example: 
– Choose C’ as q random element from C  
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Multi-way affinities 

aij ¼
X

c2C0
P(i; c)P(j;c)

O(n2 ¢ q) instead of O(n(p+1))
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Improvement of multi-way 
affinities clustering 

Chen & Lerman,  IJCV 2009 

• Choosing C’ij randomly may be an ineffective 
approach 

• Efficiency increases slowly with increasing q 

• They propose an iterative approach: 

1. Do an initial clustering based on random C’ij 
• Produces tentative clusters 

2. Redo the clustering: select the elements of C’ij 
randomly but only within the tentative clusters 
• Increases the chance of getting large and correct affinities 

3. Iterate from 2 until happy  
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Multi-way affinities: A real example 

• Revisit the motion segmentation problem 

• How do we deal with 3d motions? Real example Hopkins155 dataset 

 

 

 

 

 

• Define an affinity between multiple points that implies 3d motion 

consistency 

 

• Much more robust than simple pairwise 2d point affinities 

 

• Linear combination of views for motion segmentation [Zografos and Nordberg 2011]:  

• Use 7+1 points in an image to define a 3d motion affinity (8-tuple) 

 

• We use spatial K-means to get good quality n-tuple columns 
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Multi-way affinities: A real example 

C1 C2 C3 

C5 

C4 

C6 

Sample in image space. Any 

single frame will do. 
Real trajectory 

Synthetic 

trajectories of  

P(j,1) 

P(j,2) 

… 

P(j,6) 

Synthesise with 
LCV equations 

Match 

n-tuple affinities 

:::
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Multi-way affinities: A real example 

• The n-tuple affinity between the point      and the n-points c is defined as: 

 

 

 

• K is a kernel function 

 
• The affinity matrix is therefore A ¼ PPT  

P matrix (300 columns) Affinity matrix A 
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Multi-way affinities: A real example 

• The results. The different methods differ on the way they define their 

affinities. All use multi-way affinities 

The average and total runtime on the full Hokpins155 dataset 
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Extensions: Large affinity matrices 

The Nyström method 

• In some cases n may be very large 

– Example: n = number of pixels in the image 

• Forming n £ n matrix A and then doing 
spectral clustering on A becomes 
infeasible 

• Use the Nyström method as a means for a 
numerical approximation of the clustering 
problem 

– Proposed by Fowlkes, et al, PAMI (2004) 
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The Nyström method 

Basic idea of the Nyström method (1924) 

• Given an n £ n affinity matrix A 

• Subsample it to form n’ £ n’ matrix A’ 

• Then, also A’ is an affinity matrix, but for a subset 
of the original points 

• Spectral clustering on A’ will reveal tentative 
clusters in this subset 

– In this case: we need only U’ holding the k largest 
eigenvectors of A’ 

• Extend these to include also the original points 

How? 

How? 
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The Nyström method 

Sampling: 

• In some applications in makes sense to consider 
pair-wise affinities between points that are “close” 
– For example: pixels that are close in the image 

• This, however, discourages the use of long-range 
affinities that sometimes are present in images 
– For example: motion segmentation 

• Better option: do a sub-sampling of the points in a 
regular or pseudo-random way 
– For example: consider only every r-th point: n’ = n / r 

– A’ is (n / r) £ (n / r) 

A is a permutation ¦ of

µ
A0 B

BT C

¶
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The Nyström method 

Nyström extension of eigenvectors: 

• Let U’ hold the k largest eigenvector of A’ , 
each with eigenvalue ¸i, i = 1, ..., k 

• Extend n’ £ k matrix U’ to n £ k matrix Ue 

– an approximation of U up to   

 as follows 

ue;i =
1

n0¸i

µ
A0

BT

¶
U0

B = affinities between the n-n’ 

missing points in A’ and the n’ points 

in A’ 

¦
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Nyström method: numerical 
example 

Affinity matrix A 

1000 points 

Normalized row 

space of U 

We need to solve a 
1000 £ 1000 

eigenvalue problem to 

get here 
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Nyström method: numerical 
example 

Affinity matrix A’ 

50 points 

Normalized row 

space of U’ 

We need to solve a 
50 £ 50 eigenvalue 

problem to get here 
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Nyström method: numerical  
example 

Normalized row 

space of Ue = 

approximation of U 

Nyström alternatives: 

- Fast approximate Spectral clustering (Yan et al. KDD 2009) 
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Extensions: K-means 

• Generally non-spherical clusters and distributed on 

hyperspheres 

 

• K-means with Euclidean 

distance is not the best 

choice 

 

• Also the shape of the 

clusters needs to be taken 

into consideration 

 

 

 

What happens 

to these points? 
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Extensions: K-means 

 

 

• Standard K-means tries to minimise 

 

                                                                          is the cluster mean        

 

• The appropriate geodesic distance on the sphere is the cosine 

similarity 

 

 

• Thus K-means on the unit hyper-sphere instead maximises 

 

 

  

 

• How is the mean defined on the sphere? 

 

 

 

 

E =
P

x

P
k

¯
¯ jx ¡ ¹ k (x )

¯
¯ j2 ;

E =
P

x

P
k

x
T

¹ k (x )

D ( i ; j ) =
x
T

i
x j

j jx i j j j jx j j j

¹ k (x )

Unit sphere! 
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Extensions: K-means 

• The mean of a cluster on the hyper-sphere 

 

• Extrinsic (depends on the embedding space) 

• Just take the average of the cosine similarities. Simple 

 

• Intrinsic (depends on the manifold only) 

• The Fréchet  mean (discrete) 

 

 

point guaranteed to lie on the manifold but requires nonlinear 

optimisation on the spherical manifold 

 

• Simpler alternative approximation: 

• Take the average of the cosine similarities and normalise 

¹ k (x ) = a rg m in x2M

¡
1

n

P
i

D (x i ; x j )
2
¢

¹ k (x ) ¼
P

x2 k x = jj
P

x2 k x jj
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Extensions: K-means 

• But we have non-spherical clusters:  

• Use the sq. Mahalanobis distance between a point and a cluster 

 

                                                                   is the covariance matrix 

 

• On the hyper-sphere it becomes 

 

 

 

 

• What is the covariance on the manifold? 

• Quite complicated (see X. Pennec). Defined on the tangent 

space at the mean point of the cluster 

 

• Use the extrinsic formulation instead but with cosine 

similarities 

 

 

 

 

 

 

D M (x ; k ) = (x ¡ ¹ k )
T
§
¡ 1

(x ¡ ¹ k ) ;

D M (x ) = ¹ k x
T
§
¡ 1

¹ k x

§
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A K-Mahalanobis algorithm 

on the hyper-sphere 
1. Initialise 𝑘 clusters with at least 𝑘 points each (𝑘 is the number of dims) 

 

2. Calculate mean of each cluster 𝑘 

 

3. Calculate covariance matrix of each cluster 𝑘 
 

4. Calculate Mahalanobis distances of each point 𝑥𝑗 to each cluster mean 𝜇𝑘 

 

 

5. Assign point 𝑥𝑗 to cluster with minimum distance 

 

6. Goto 2 until convergence 

 

 
• Does it work any better? Depends 

• If the clusters are compact then K-Means and K-Mahalanobis on the hyper-sphere 

should be similar 

• If the clusters are dispersed and non-isotropic then the K-Mahalanobis on the 

hyper-sphere should be better 

• Remember: When we search for parameters the clusters tend to be dispersed 

and far away  

 

 

 

 

 

 

¹ k (x ) ¼
P

x2 k x = jj
P

x2 k x jj

D M (x ) = ¹ k x
T
§
¡ 1

¹ k x
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Putting some ideas together 

• A real segmentation problem…or “segmenting green from green” 

• Task: Segment the 4 leaves 

 

• Challenge: Everything looks the same! Variations only on small 

scales near pixel level.  

 

 

 

 

• Assumptions:  

• We know that the plant is 

approximately on the center of the 

image.  

• We know there are 4 leaves 

• They are approximately elliptical  

 

 

• Notions:   

• Multiple-affinities 

• Pairwise affinities 

• Automatic-parameter tuning 

• Problem-specific cluster quality 
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Leaf segmentation 

• First step: The plant is green! So threshold the green stuff from the 

background. Simplifies the problem 
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Leaf segmentation 

• Second step: Working on pixel levels is very expensive. But we need 

to capture texture variations on the smaller scales. 

• At large scales everything looks the same 

• Subdivide the image into small regions 

• Instead of regular patches use super-pixels. They can adapt to the 

local shape variations. Preserves boundaries 

Super-pixel random labels Super-pixel grid 

The task simplifies to clustering the 

super-pixels into 4 labels 
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Leaf segmentation: Affinity combination 

• Extract a texture descriptor (e.g. Weibull distribution) at each sub-

pixel patch 𝑠𝑖 

 

• Pairwise texture affinity is defined as  

 
• 𝑅 is the Rao distance between the distributions of two patches 

 

AT (i; j) = exp(¡R(si; sj)=¾2T )

Small scale patches are good for 

differentiating between nearby patches 

 

Especially around borders  

 

Larger patches are not that good 
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Leaf segmentation: Affinity combination 

• Texture does not help in distant patches. We need an additional affinity.  

• Euclidean distance of super-pixel centroids 

 

 

 
AE(i; j) = exp(¡jjCsi ¡Csjj j2=¾2E)

 

• Affinity combination via weighted 

Hadamard product 

 

 

 

 

• The weight W is the parameter 

we are looking for 

 

A = AT : ¤AW
E
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Leaf segmentation: Parameter tuning via problem 

specific quality measure 

• Even with the combination of texture + distance affinities the problem 

is quite hard. We need to find a good combination parameter 

 

• Parameter tuning 

• We know that the leaves are elliptical. Thus fit a geometric model 

(ellipse) and check residual 

• Quality measure is the total overlap error between the ellipses 𝐸 

and the segments 𝑆. Both are binary images 

q = E[S¡E\S
E[S

E 
S 

E 
S 

E [S¡E \S E [S
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Leaf segmentation 

• Searching for the combination parameter W 

Reasonable solutions 
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Leaf segmentation 

• K-means distortion (generic) vs geometric (problem specific) 

Problem specific 

Generic 
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Summary 

• What have we learned in this introductory course? 

 

• Lecture 1: Core ideas of SC and connection to graphs 

 

• Lecture 2: Intuitive explanation of SC mechanics and 

different SC algorithms  

 

• Lecture 3: Practical issues (Parameter tuning, multiple-

vews, multi-way affinities, large affinity matrices, real 

applications) 
 

 


