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What this course is 

• Basic introduction into the core ideas of 

spectral clustering 

• Sufficient to get a basic understanding of 

how the method works 

• Application mainly to computer vision 

• In the end you should be: 

– Able to implement and tune S.C. 

– Make design choices for particular problems 
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What this course is not 

• Not a course in graph theory 

– Many connections and proofs from spectral graph 

theory are not here. [Look at F. Chung, Spectral graph theory] 

• Not covering advanced features and 

applications of SC  

 

• Connection to other methods is not covered 

in detail. [Look at website and papers by Chris Ding] 

 

• Only looking at undirected simple graphs 
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Course contents 
• 3 lectures 

– Lecture 1: Basic concepts, graph cuts, a S.C. algorithm, 

– Lecture 2:  The mechanics of S.C., different S.C. algorithms 

– Lecture 3: Applications of S.C., extensions and enhancements, 

practical issues 

 

• 1 coursework 

– Simple spectral clustering problem (data provided) 

– Our your own problem 
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Course contents – Part 1 

1. Overview of clustering 

2. Properties of a cluster 

3. Basic graph theory 

4. Graph cuts and clustering 

5. Introduction to spectral clustering 

6. A simple spectral clustering example 
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What is spectral clustering 

• Clustering algorithm: 

– Treats clustering as a graph partitioning 

problem without making specific 

assumptions on the form of the clusters. 

 

– Cluster points using eigenvectors of 

matrices derived from the data. 

– Data mapped to a low-dimensional space 

that are separated and can be easily 

clustered. 
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Pros and cons of spectral clustering 

• Advantages: 

– Does not make strong assumptions on the 

statistics of the clusters 

– Easy to implement. 

– Good clustering results. 

– Reasonably fast for sparse data sets of several 

thousand elements. 

 

• Disadvantages: 

– May be sensitive to choice of parameters 

– Computationaly expensive for large datasets 
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Spectral clustering in one slide 
Graph theoretic point of view 

• Given data points 𝑥1, … 𝑥𝑁, pairwise affinities 

A𝑖𝑗 = 𝐴(𝑥𝑖, 𝑥𝑗) 

• Build similarity graph 

 

 

 

 

 

 

• Clustering = find a cut through the graph 
– Define a cut-type objective function 

– Solve it 
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Spectral clustering in one slide 
Low-dimensional embedding point of view 

• Given data points 𝑥1, … 𝑥𝑁, pairwise affinities A𝑖𝑗 = 𝐴(𝑥𝑖, 𝑥𝑗) 

• Find a low-dimensional embedding  

• Project data points to new space 

 

 

 

 

 

 

 

• Cluster using favourite clustering algorithm 

 

 

 

 

 

 

 

Data space 

Low-dimensional  

space 
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Spectral clustering in one slide 

• Both points of view are related 

 

• The low-dimensional space is determined by the data 

 

• Spectral clustering makes use of the spectrum of the 

graph for dimensionality reduction 

– Embed data points in the subpace of the 𝑘-eigen-vectors 

 

• Projection and clustering equates to graph partition 

by different min-cut criteria 
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Overview of clustering 

• What is clustering? 
– Given some data and a notion of similarity 

– The task of partitioning the input data into 

maximally homogeneous groups (i.e. clusters) 
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Overview of clustering 

• What is a cluster? 

– Homogeneous group 

– No universally accepted definition of homogeneity 

 

• In general a cluster should satisfy two 

criteria: 

– Internal: All data inside a cluster should be highly 

similar (intra-cluster) 

– External: Data between clusters should be highly 

disimilar (inter-cluster) 
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Overview of clustering 

• Applications 

– Image processing and computer vision 

– Computational biology 

– Data mining and information retrieval 

– Statistical data analysis 

– Machine learning and pattern recognition 

– … 
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A clustering of clustering 

 

Graph theoretic 
• Graph cuts 

• Spectral clustering 

• … 

 

 

Distribution based 
• E-M algorithm 

• KDE clustering 

• … 

 

 

Centroid based 
• K-Means 

• … 

 

 

Mode seeking 
• Mean / Median shift 

• Medoid shift 

• … 

 

 

Connectivity 

based 
• Hierarchical clustering 

• … 
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Some definitions 
 

• Clustering function 𝑓 for some domain 𝑋, is a 

function that takes a distance 𝑑 over 𝑋 and outputs a 

clustering 𝐶 of 𝑋 

 

• Clustering quality measure is a function 𝑚 that 

given a clustering 𝐶 over (𝑋, 𝑑) returns a non-

negative real number  
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What is a good clustering 
• Kleinberg’s axioms for clustering functions 𝑓 : 

 
– Scale invariance: The output of a clustering function should be invariant to 

uniform scaling of the input   

𝒇 𝒅(𝒙, 𝒚) = 𝒇(𝝀𝒅 𝒙, 𝒚 ) 

 

– Consistency: If intra-cluster distances are decreased and inter-cluster 

distances are increased then the clustering output should not change 

If 𝒇 𝒅 = 𝑪 and 𝒅′ is 𝑎 𝐂 − enhancing transformation of 𝒅, then 𝒇 𝒅′ = 𝑪 
𝒅′ is a 𝑪 − enhacning transformation of 𝒅 if 

𝒅′ 𝒙, 𝒚 ≤ 𝒅 𝒙, 𝒚 , for 𝒙, 𝒚 ∈ 𝑪     and  

          𝒅′ 𝒙, 𝒚 ≥ 𝒅 𝒙, 𝒚 , for 𝒙, 𝒚 ∉   𝑪 

 

– Richness: By modifying the distance function, any partition of the 

underlying data can be obtained  

∀ partition 𝑪 of 𝑿, there exists 𝒅 over 𝑿 𝑠. 𝑡. 𝒇 𝒅 = 𝑪 
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What kinds of algorithms 

 satisfy the axioms? 

• Single linkage till you get k clusters. 

– satisfies scale invariance and consistency, but not richness 

 

 

• Single linkage till distances exceed 𝜏 max𝑖𝑗 𝑑(𝑥, 𝑦) , 
where 𝜏 is some constant. 

– satisfies scale invariance and richness but not consistency 

 

 

• Single linkage until distances exceed some threshold 𝑟. 
– satisfies richness and consistency but not scale invariance 
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What is a good clustering 

• Kleinberg’s impossibility theorem 
“There exists no clustering function that simultaneously 

satisfies scale invariance, consistency and richness” 

 

 

 

• Instead of defining clustering functions, we 

focus on the quality of a given clustering 
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Properties of a good cluster 

• Clustering quality measure 𝑚 𝐶, 𝑑 ∈ 𝑅 
– Scale invariance 

𝒎 𝑪,𝒅 = 𝒎 𝑪, 𝝀𝒅 , ∀𝒅 and 𝝀 > 𝟎 

 

– Consistency 

If 𝒅′ is 𝑎 𝐂 − enhancing transformation of 𝒅 
then 𝒎 𝑪,𝒅 ≤ 𝒎(𝑪, 𝒅′) 

– Richness 

∀ 𝑪 ∃ 𝒅 𝑠. 𝑡. 𝑪 = 𝐚𝐫𝐠𝐦𝐚𝐱𝑪𝒎(𝑪, 𝒅) 

 

– Isomorphic invariance 

If 𝑪 ≈ 𝒅𝑪′ then 𝒎 𝑪, 𝒅 = 𝒎(𝑪
′, 𝒅′) 
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Quality measures   
• Relative margin (Ackerman and Ben David, 2008) 

• C-index (Dalrymple and Alford, 1970) 

• Gamma (Baker and Hubert, 1975) 

• D-index (Dalrymple and Alford, 1970) 

• Dunn’s index (Dunn, 1973) 

• Distortion (Lloyd, 1957) 

• Silhouette (Kaufman and Rousseeuw, 1990) 

• Davies-Bouldin (Davies and Bouldin, 1979) 

• Calinski-Harabasz (Calinski and Harabasz 1974) 

• Hartigan (Hartigan, 1975) 

• Krzanowski-Lai (Krzanowski and Lai, 1985) 

• … 

 

• Quality measures will be revisited in the 3rd lecture 
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Graphs 

• Other datasets can be transformed simply into 

similarity (or affinity) graphs 

– Affinity can encode local-structure in the data 

– Global structure induced by a distance function is often 

misleading 

• Graphs are an important component of spectral clustering 

• Many datasets have natural graph structure 

– Web pages and links 

– Protein structures 

– Citation graphs 

– … 

 

• Efficient in encoding of sparse data 

• Suited for representing data based on pairwise relationships (e.g. 

affinities, distances) 

• A positive symmetric matrix can be represented as a graph 
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Affinity and distance 

• An affinity score between two objects 𝑥𝑖, 𝑥𝑗 is “high” if the 

objects are “very similar” 

– E.g. the Gaussian kernel       𝑠 𝑖, 𝑗 = exp −
𝑥
𝑖
−𝑥
𝑗

2𝜎2
  

• A distance score between two objects 𝑥, 𝑦 is “small” if the 

objects are “close” to each other 

– E.g. the Euclidean distance    𝑑 𝑖, 𝑗 = 𝑥𝑖 − 𝑥𝑗  

 

• Distances and affinities have an inverse relationship high 

affinity ↔ low distance 

• A distance can be turned into an affinity by using an appropriate 

kernel  

• Many choices of kernels. One of the most important choices in 

spectral clustering 
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Graph basics 

• Definition: A graph G is a triple consisting of a vertex set V(G), 

an edge set E(G) and a relation that associates with each edge 

two vertices. 

Directed graph 

0,2 

2,1 

2,3 

2,2 

2,1 
2,1 

2,2 

1,1 

2,1 

Undirected graph 

2 

5 

5 

4 

4 

4 

4 

5 4 

Simple undirected graph Complete graph 

In spectral 

clustering we 

always work with 

undirected graphs 
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Graph basics 

Adjacency matrix 𝑊 of undirected graph 
• NxN symmetric binary matrix 

• rows and columns represent the vertices and  entries represent the 

edges of the graph. 

• Simple graph = zero diagonal 

𝑾 𝒊, 𝒋 = 𝟎 if 𝒊, 𝒋 are not connected 

𝑾 𝒊, 𝒋 = 𝟏 if 𝒊, 𝒋 are connected 

 

 

9 

7 

6 

8 

2 

5 

4 

1 3 

0 1 0 0 0 1 1 0 1 

1 0 1 1 1 0 0 0 0 

0 1 0 1 1 0 0 0 0 

0 1 1 0 1 0 0 0 0 

0 1 1 1 0 0 0 0 0 

1 0 1 0 0 0 1 1 0 

1 0 0 0 0 1 0 1 1 

0 0 0 0 0 1 1 0 0 

1 0 0 0 0 0 1 0 0 
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Graph basics 

Affinity matrix 𝐴 of undirected graph 

 

• Weighted adjacency matrix 

• Each edge is weighted by pairwise vertex affinity 

 

𝑨 𝒊, 𝒋 = 𝟎 if 𝒊, 𝒋 are not connected 

𝑨 𝒊, 𝒋 = 𝒔(𝒊, 𝒋)  if 𝒊, 𝒋 are connected 

 

• By adjusting the kernel parameter we can set the affinity of 

dissimilar vertices to zero and essentially disconnect them 
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Graph basics 

Degree matrix 𝐷 of undirected graph 
• NxN diagonal matrix that contains information about the degree of each 

vertex 

• Degree 𝒅(𝒗𝒊) of a vertex 𝒗𝒊 of a graph is the number of edges incident 

to the vertex. Loops are counted twice 

 

𝐃 𝒊, 𝒋 = 𝟎 if  𝒊 ≠  𝒋  

𝐃 𝒊, 𝒋 = 𝒅(𝒗𝒊) if 𝒊 = 𝒋   ⇒   𝑫 = diag(𝒅𝟏, … , 𝒅𝑵) 
4 0 0 0 0 0 0 0 0 

0 3 0 0 0 0 0 0 0 

0 0 4 0 0 0 0 0 0 

0 0 0 3 0 0 0 0 0 

0 0 0 0 3 0 0 0 0 

0 0 0 0 0 4 0 0 0 

0 0 0 0 0 0 4 0 0 

0 0 0 0 0 0 0 4 0 

0 0 0 0 0 0 0 0 2 

9 

7 

6 

8 

2 

5 

4 

1 3 
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Graph basics 

Laplacian matrix of simple undirected graph 

 

• 𝐿 = 𝐷 − 𝐴 (Degree – Affinity) (Unnormalised) 

• 𝐿 is symmetric and positive semi-definite 

• The smallest eigen-value is 0, the corresponding eigen-

vector is the constant one 𝟏 

• N non-negative real-valued eigen-values 

0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑁 

 

• The smallest non-zero eigenvalue of L is called the spectral 

gap. 

• Laplacian has a complete set of orthonormal eigen−vectors 
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Graph construction 

• There are different ways to construct a graph representing 

the relationships between data points : 

 

– Fully connected graph: All vertices having non-null similarities are 

connected each other 

– r-neighbourhood graph: Each vertex is connected to vertices falling 

inside a ball of radius r where r is a real value that has to be tuned in 

order to catch the local structure of data. 

– k-nearest neighbour graph: Each vertex is connected to its 𝑘-
nearest neighbours where 𝑘 is an integer number which controls the 

local relationships of data. 

 

• Different graph constructs reprensent different local-

structure of the data 
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Graph construction – Examples 
k-nearest neighbour graphs 

 
• Given data points and their pairwise affinities 𝐴(𝑖, 𝑗) 

• Connect each point to its k-nearest neighbours 

• Weigh the edges by the affinity score 

 

• Generally graph is directed and non-symmetric 

(neighbourhood relationship is not symmetric) 

• Example 2-nearest neighbours 
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Graph construction – Examples 
Undirected k-nearest neighbour graphs 

 
• Make a directed graph to an undirected using ”AND” or 

”OR” operations 

• The symmetric kNN graph connects 𝐴 with 𝐵 if 𝐴 → 𝐵 or 

𝐵 → 𝐴  

• The mutual kNN graph connects 𝐴 with 𝐵 if 𝐴 → 𝐵 and 

𝐵 → 𝐴  

 

kNN graph 

Symmetric 

kNN graph 

Mutual 

kNN graph 
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Graph construction – Examples 
Undirected k-nearest neighbour graphs 

• The mutual kNN graph is a subset of the symmetric kNN 

Symmetric kNN Mutual kNN 
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Graph construction – Examples 
r-neighbourhood graph 

• Given data points and their pairwise affinities 𝐴(𝑖, 𝑗) 

• Connect each point to all other points that have affinity 

above a threshold 𝑟 

• Weigh the edges by the affinity score or use unweighted 

graph 

 



Computer Vision Laboratory 

Graph spectrum 

 • Spectrum is the multiset of the eigen−values of the 

Laplacian matrix or the graph associated with it 

Spec 𝐺 =
𝜆1…𝜆𝑡
𝑚1…𝑚𝑡

 

where 𝜆1…𝜆𝑡 is the set of distinct eigen−values 
and   𝑚1…𝑚𝑡 their multiplicities.    

• Laplacian matrix depends on the vertex labelling, its 

spectrum is invariant (i.e. does not depend on the 

representation) 

• Multiplicity of 0 eigen-value is the number of connected 

components 𝑘 of the graph (i.e. clusters) 

• The eigen-space is spanned by the indicator vectors 

𝟏𝑉1, … , 𝟏𝑉𝑁  of those components 
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Clustering as a graph-theoretic problem 

• 𝐺 a graph with vertex set 𝑽 = 𝒗𝟏, … , 𝒗𝑵  

• Subset 𝒁 ⊂ 𝑽 

• 𝑨(𝒁𝒊, 𝒁𝒋) =  𝑨(𝒊, 𝒋)𝒊∈𝒁𝒊,𝒋∈𝒁𝒋,
 for 𝒁𝒊, 𝒁𝒋 ⊂ 𝑽 

• 𝒁 : number of vertices in 𝑍 

• 𝒗𝒐𝒍 𝒁 =   𝑫𝒊𝒊∈𝒁   : volume of 𝑍 
•  i.e. sum of the weights of all edges attached to vertices in 𝑍 

• All vertices that can be reached from each other by 

a path form a connected component (i.e. no 

connections between 𝑍  and 𝑍 . 𝑍  is the complement of 𝑍) 

• The non-empty sets 𝑍1, … , 𝑍𝑘 form a partition of the 

graph if 𝑍𝑖 ∩ 𝑍𝑗 = ∅ and 𝑍1 ∪⋯∪ 𝑍𝑘 = 𝑉 
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Node volume vs Set (cluster) volume 

• Node volume 
        𝑫𝒊 =   𝑨(𝒊, 𝒋)

𝑁

𝒋=𝟏
 

i.e. weighted sum of all of the  

edges connected to the node 

 

 

• Set (cluster) volume 
   𝒗𝒐𝒍 𝒁 =   𝑫𝒊

𝒊∈𝒁
 

 

i.e. sum of the weights of all edges 

 attached to vertices in 𝑍 

 

 

𝒁 

𝑿𝒊 
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Clustering as a graph-theoretic 

problem 

 • Given a similarity graph with affinity matrix A the simplest 

way to construct a partition is to solve the min-cut problem: 

– Choose the partition 𝑍1, … , 𝑍𝑘 that minimises  

cut 𝑍1, … , 𝑍𝑘 =
1

2
 𝐴(𝑍𝑖, 𝑍𝑖 )

𝑘

𝑖=1

   where 𝐴 𝑍1, 𝑍2 = 𝐴(𝑖, 𝑗)
𝑖∈𝑍
1
,𝑗∈𝑍

2

 

Min-cut 

𝑍1 

𝑍2 
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Clustering as a graph-theoretic 

problem – An example 

• We require 2 clusters 

• It is obvious we need to cut at least 2 edges 
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Clustering as a graph-theoretic 

problem – An example 

• We require 2 clusters 

• It is obvious we need to cut 2 edges 

• cut 𝑨, 𝑩 =
𝟏

𝟐
 𝐀𝐟𝐟𝐢𝐧𝐢𝐭𝐲(𝑨,𝑩)𝒊∈𝑨,𝒋∈𝑩 = 𝟎. 𝟑  
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• Min-cut can be solved efficiently especially for 𝑘 = 2 

• Does not always lead to reasonable results if the 

connected components are not balanced 

Clustering as a graph-theoretic 

problem 

Min-cut 

𝑍1 

𝑍2 

• Workaround: Ensure that 

the partitions 𝑍1, … , 𝑍𝑘 are 

sufficiently “large”  

 

• This should lead to more 

balanced partitions 
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Clustering as a graph-theoretic problem 

• Ratio-cut [Hagen and Kahng, 1992]: The size of a subset 𝑍 is measured 

by its number of vertices 𝑍  

𝑹𝒂𝒕𝒊𝒐𝑪𝒖𝒕 𝒁𝟏, … , 𝒁𝒌 =
𝟏

𝟐
 
𝑨(𝒁𝒊, 𝒁 𝒊)

𝒁𝒊

𝒌

𝒊=𝟏

= 
cut(𝒁𝒊, 𝒁 𝒊)

𝒁𝒊

𝒌

𝒊=𝟏

 

 

• Normalised cut [Shi and Malik, 2000]: The size of a subset 𝑍 is 

measured by the weights of its edges vol(𝑍) 

𝑵𝑪𝒖𝒕 𝒁𝟏, … , 𝒁𝒌 =
𝟏

𝟐
 
𝑨(𝒁𝒊, 𝒁 𝒊)

vol(𝒁𝒊) 

𝒌

𝒊=𝟏

= 
cut(𝒁𝒊, 𝒁 𝒊)

vol(𝒁𝒊)

𝒌

𝒊=𝟏

 

 

• Min-max cut [Ding et al. 2001]:  

𝑴𝒊𝒏 −𝑴𝒂𝒙 − 𝑪𝒖𝒕 𝒁𝟏, … , 𝒁𝒌 =
𝟏

𝟐
 
𝑨(𝒁𝒊, 𝒁 𝒊)

𝑨(𝒁𝒊, 𝒁𝒊) 

𝒌

𝒊=𝟏

= 
cut(𝒁𝒊, 𝒁 𝒊)

𝑨(𝒁𝒊, 𝒁𝒊)

𝒌

𝒊=𝟏

 

 

 Min similarity between Max similarity within 
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Clustering as a graph-theoretic problem 

• Due to the normalisations introduced the solution becomes NP-hard 

• Relaxing Ncut  and Min−Max−Cut lead to normalised spectral clustering. 

Relaxing RatioCut leads to unormalised spectral clustering [von Luxburg 

2007] 

 

• Relaxed RatioCut solution: eigenvectors 

 𝑿 = 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒌    𝑠. 𝑡.  𝑫 −𝑾 𝒗𝒌 = 𝝀𝒌𝒗𝒌    where 𝑳 = 𝑫 − 𝑨 

 

• Relaxed Ncut solution: eigenvectors  

𝒀 = 𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌   𝑠. 𝑡.   𝑰 − 𝑳sym 𝒖𝒌 =  𝝀𝒌𝒖𝒌   where     𝑳sym = 𝑫
−𝟎.𝟓𝑨𝑫−𝟎.𝟓 

 

• Relaxed Min-Max-cut solution: eigenvectors 

𝒀 = 𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌   𝑠. 𝑡.       𝑳sym𝒖𝒌 =  𝝀𝒌𝒖𝒌   where     𝑳sym = 𝑫
−𝟎.𝟓𝑨𝑫−𝟎.𝟓 

 

• Quality of solution of relaxation is not guaranteed compared to exact solution 
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Spectral clustering Method #1 
[Perona and Freeman 1999] 

 

• Partition using only one eigenvector at a 

time 

• Use procedure recursively 

– Uses 2nd (smallest) eigenvector to define 

optimal cut  

– Recursively generates two clusters with 

each cut 
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Spectral clustering Method #2 
[Shi and Malik 2000, Scott and Longuet-Higgins, Ng et al. 2002] 

 

• Use k smallest eigenvectors 

• Directly compute k-way partitioning 

• Usually performs better 

 

• We will be using this approach from 

now on 
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A spectral clustering algorithm 
Input: Data matrix 𝑷 ∈ ℝ𝑵×𝑭 (𝑵 =data points, 𝑭 = dimensions), 

𝒌 number of clusters 

 

• Construct pairwise affinity matrix 𝑨 𝒊, 𝒋 = 𝒆𝒙𝒑 −
𝒙
𝒊
−𝒙
𝒋

𝟐𝝈𝟐
  

• Construct degree matrix 𝑫 = diag(𝒅𝟏, … , 𝒅𝑵) 

• Compute Laplacian 𝑳 = 𝑫 − 𝑨 (unormalised) 

• Compute the first 𝑘 eigen-vectors 𝒖𝟏, … , 𝒖𝒌 of 𝑳 

• Let 𝑼 ∈ ℝ𝑵×𝒌 contain the vectors 𝒖𝟏, … , 𝒖𝒌 as columns 

• Let 𝒚𝒊 ∈ ℝ
𝒌 be the vector corresponding to the i-th row of 𝑼 

• Cluster the points (𝒚𝒊) 𝒊 = 𝟏,… ,𝑵 into 𝒌 clusters 𝒉𝟏, … , 𝒉𝒌 with K-means 

 

Output: Clusters 𝒁𝟏, … 𝒁𝒌 with 𝒁𝒊 = {𝒊|𝒚𝒊 ∈ 𝒉𝒊} 
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K-means 

• Basic clustering algorithm. Given a set of observations 𝑥1, … 𝑥𝑁 partition 

into 𝑘 clusters s.t. the within cluster sum of squares (distortion) is 

minimised  

argmin  𝑥𝑗 − 𝜇𝑖
2

𝑥
𝑗
∈𝐶
𝑖

𝑘

𝑖=1

 

• NP-hard. Iterative algorithm available 

1. Initialise 𝑘 clusters 

2. Calculate cluster means 𝜇𝑖 
3. Calculate distances of each point 𝑥𝑗 to each cluster mean 𝜇𝑖 
4. Assign point to nearest cluster 

5. Goto 2 until convergence 

 

• Number of clusters need to be known. Gives convex clusters 
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Why not just use K-means? 

• One could use K-means directly on the affinity matrix (or 

some other clustering approach such as mean shift) 

• S.C. separates data while projecting in the low-dimensional 

space 

• Allows clustering of non-convex data 

 

Before spectral clustering After spectral clustering 
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Why not just use K-means? 

K-means Spectral clustering 

We do K-means 

here instead 
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Simple example revisited 

• Now we will use spectral clustering instead 
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Step 1: Pairwise affinity matrix 

X1 X2 X3 X4 X5 X6 

X1 0 0.8 0.6 0 0.1 0 

X2 0.8 0 0.8 0 0 0 

X3 0.6 0.8 0 0.2 0 0 

X4 0 0 0.2 0 0.8 0.7 

X5 0.1 0 0 0.8 0 0.8 

X6 0 0 0 0.7 0.8 0 
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Step 2: Laplacian matrix 

𝐿 = 𝐷 − 𝐴 

 
X1 X2 X3 X4 X5 X6 

X1 1.5 -0.8 -0.6 0 -0.1 0 

X2 -0.8 1.6 -0.8 0 0 0 

X3 -0.6 -0.8 1.6 -0.2 0 0 

X4 0 0 -0.2 1.7 -0.8 -0.7 

X5 -0.1 0 0 -0.8 1.7 -0.8 

X6 0 0 0 -0.7 -0.8 1.5 
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Step 3: Eigen-decomposition 
• Eigen-values 𝜆= 

 

 

 

 

 

 

 

 

 

 

• Eigen-vectors 𝑣 = 

 

 

0 

0.18 

2.08 

2.28 

2.46 

2.57 

-0.4082 0.4084 … 

-0.4082 

 

0.4418 … 

-0.4082 

 

0.3713 … 

-0.4082 

 

-0.3713 … 

-0.4082 

 

-0.4050 … 

-0.4082 

 

-0.4452 … 

𝑼 

𝑵 × 𝒌 
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Step 4: Embedding 
• 𝑈= 

 

 

 

 

 

 

 

• 𝑌 = row_normalise(𝑈) 

-0.4082 0.4084 

-0.4082 

 

0.4418 

-0.4082 

 

0.3713 

-0.4082 

 

-0.3713 

-0.4082 

 

-0.4050 

-0.4082 

 

-0.4452 

-0.7070 0.7072 

-0.6786 

 

0.7345 

-0.7398 

 

0.6729 

-0.7398 

 

-0.6729 

-0.7099 

 

-0.7043 

-0.6759 

 

-0.7370 

• Each row of 𝑌 is a point in eigen-

space 
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Step 5: Clustering 
• K-means clustering with 2 clusters 

• Easy, convex clustering problem 

K-means 

A 

B 
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Simplex spectral embedding 
• Compute 𝑘 eigen-vectors of the Laplacian. 

• Embed objects in the k-dim eigen-space 

 

• In the embedded space, objects aggregate to 𝑘  distinct 

centroids: 

– Centroids locate on k corners of a simplex 

– Simplex consists k basis vectors + coordinate origin 

– Simplex is rotated by an orthogonal transformation 

matrix 𝑇 = (𝒕1, … , 𝒕𝑘)  

– Columns of 𝑇 are eigenvectors of a k × k embedding 

matrix Γ with Γ𝒕𝑘 =  𝜆𝑘 𝒕𝑘 
– Eigenvalues of Γ = eigenvalues of 𝐿 = 𝐷 − 𝐴 
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K-means Clustering in Eigen-space 

• Simplex spectral embedding theorem provides 

theoretical basis for K-means clustering in the 

embedded eigenspace 

 

– Cluster centroids are well separated (corners of the 

simplex) 

 

– K-means clustering is invariant under (i) coordinate 

– rotation 𝑥 →  𝑇𝑥, and (ii) shift 𝑥 →  𝑥 +  𝑎 

 

– Thus orthogonal transform 𝑇 in simplex embedding is 

irrelevant 
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Choices choices… 

• Affinity matrix construction (distance and kernel) 

 

• Choice of kernel parameter 𝜎 (scaling factor) 

– Practically, search over 𝜎 and pick value that 

gives the tightest clusters 

 

• Choice of 𝑘, the number of clusters 

 

• Choice of clustering method 
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Summary 

• We have seen so far 

– Basic definitions of cluster, clustering and cluster quality 

– Graph basics, affinity, graph construction, graph spectrum 

– Graph cuts 

– Spectral clustering and graph cuts 

– A spectral clustering algorithm and a simple example 

– K-means and spectral clustering 

 

• For the next lecture 

– Intuitive explanation of different S.C. algorithms 

 


