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What this course IS

e Basic introduction into the core ideas of
spectral clustering

 Sufficient to get a basic understanding of
how the method works

* Application mainly to computer vision

* In the end you should be:
— Able to implement and tune S.C.
— Make design choices for particular problems
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What this course IS not

« Not a course in graph theory

— Many connections and proofs from spectral graph
theory are not here. [Look at F. Chung, Spectral graph theory]

* Not covering advanced features and
applications of SC

« Connection to other methods Is not covered
In detall. [Look at website and papers by Chris Ding]

* Only looking at undirected simple graphs
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| Course contents

» 3 lectures
— Lecture 1: Basic concepts, graph cuts, a S.C. algorithm,
— Lecture 2: The mechanics of S.C., different S.C. algorithms

— Lecture 3: Applications of S.C., extensions and enhancements,
practical issues

* 1 coursework
— Simple spectral clustering problem (data provided)
— Our your own problem



@
- Course contents — Part 1

. Overview of clustering

Properties of a cluster

Basic graph theory

Graph cuts and clustering
Introduction to spectral clustering

. A simple spectral clustering example

o0 AW R



What Is spectral clustering

» Clustering algorithm:

— Treats clustering as a graph partitioning
problem without making specific
assumptions on the form of the clusters.

— Cluster points using eigenvectors of
matrices derived from the data.

— Data mapped to a low-dimensional space
that are separated and can be easily
clustered.
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Pros and cons of spectral clustering

« Advantages:

— Does not make strong assumptions on the
statistics of the clusters

— Easy to implement.
— Good clustering results.

— Reasonably fast for sparse data sets of several
thousand elements.

« Disadvantages:
— May be sensitive to choice of parameters
— Computationaly expensive for large datasets
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Spectral clustering in one slide
Graph theoretic point of view

« Given data points x,, ... x,, pairwise affinities
A= A(x,, xj)

l

« Build similarity graph \

« Clustering = find a cut through the graph

— Define a cut-type objective function
— Solve it
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Spectral clustering in one slide

Low-dimensional embedding point of view
* Given data points x;, ... xy, pairwise affinities A;; = A(x;, x;)

* Find a low-dimensional embedding

* Project data points to new space

Data space

B G
/ \
[ \
\ /
N Lz

Low-dimensional
space

« Cluster using favourite clustering algorithm
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Spectral clustering in one slide

« Both points of view are related
« The low-dimensional space is determined by the data

« Spectral clustering makes use of the spectrum of the
graph for dimensionality reduction
— Embed data points in the subpace of the k-eigen-vectors

* Projection and clustering equates to graph partition
by different min-cut criteria



Overview of clustering

 What is clustering?

— Given some data and a notion of similarity

— The task of partitioning the input data into
maximally homogeneous groups (i.e. clusters)




Overview of clustering

 What is a cluster?
— Homogeneous group
— No universally accepted definition of homogeneity

* In general a cluster should satisfy two
criteria:

— Internal: All data inside a cluster should be highly
similar (intra-cluster)

— External: Data between clusters should be highly
disimilar (inter-cluster)



Overview of clustering

* Applications
— Image processing and computer vision
— Computational biology
— Data mining and information retrieval
— Statistical data analysis
— Machine learning and pattern recognition



A clustering of clustering

Connectivity Mode seeking
based +  Mean/ Median shift
Hierarchical clustering *  Medoid shift

Distribution based
E-M algorithm
KDE clustering

Graph theoretic
Graph cuts
Spectral clustering

Centroid based
K-Means




Some definitions

* Clustering function f for some domain X, is a
function that takes a distance d over X and outputs a
clustering C of X

« Clustering quality measure is a function m that
given a clustering C over (X, d) returns a non-
negative real number
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What Is a good clustering

» Kleinberg’'s axioms for clustering functions f :

— Scale invariance: The output of a clustering function should be invariant to
uniform scaling of the input

fld(x,y)) = f(Ad(x,y))

— Consistency: If intra-cluster distances are decreased and inter-cluster
distances are increased then the clustering output should not change

If f(d) = C and d' is a C — enhancing transformation of d, then f(d') = C

d' is a C — enhacning transformation of d if

d(x,y)<d(x,y),forx,y €eC and
d(x,y)=>d(xy),forx,y¢& C

— Richness: By modifying the distance function, any partition of the
underlying data can be obtained
V partition C of X, there exists d over X s.t. f(d) = C
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What kinds of algorithms
satisfy the axioms?

« Single linkage till you get k clusters.
— satisfies scale invariance and consistency, but not richness

» Single linkage till distances exceed 7 max;; d(x,y) ,
where 7 IS some constant.
— satisfies scale invariance and richness but not consistency

« Single linkage until distances exceed some threshold r.
— satisfies richness and consistency but not scale invariance



- What is a good clustering

» Kleinberg's impossibility theorem

“There exists no clustering function that simultaneously
satisfies scale invariance, consistency and richness”

* Instead of defining clustering functions, we
focus on the quality of a given clustering



"Properties of a good cluster

 Clustering quality measure m(C,d) € R

— Scale Invariance
m(C,d) = m(C,Ad),Vvd and A > 0

— Consistency
If d’ is a C — enhancing transformation of d
thenm(C,d) < m(C,d")
— Richness
VC3Ids.t.C =argmax.m(C,d)

— Isomorphic invariance
IfC = ;€' thenm(C,d) = m(C',d")



Quality measures

« Relative margin (Ackerman and Ben David, 2008)
* C-index (Dalrymple and Alford, 1970)

« Gamma (Baker and Hubert, 1975)

* D-index (Dalrymple and Alford, 1970)

e Dunn’s index (Dunn, 1973)

« Distortion (Lloyd, 1957)

« Silhouette (Kaufman and Rousseeuw, 1990)

« Davies-Bouldin (Davies and Bouldin, 1979)

« Calinski-Harabasz (Calinski and Harabasz 1974)
e Hartigan (Hartigan, 1975)

« Krzanowski-Lai (Krzanowski and Lai, 1985)

« Quality measures will be revisited in the 3" lecture
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* Graphs

« Graphs are an important component of spectral clustering

 Many datasets have natural graph structure
— Web pages and links
— Protein structures
— Citation graphs

» Other datasets can be transformed simply into ‘s Ae N\
similarity (or affinity) graphs ( o
— Affinity can encode local-structure in the data ‘;.'5‘ e ¢
— Global structure induced by a distance function is often \_ﬁ_ﬂf}/
misleading

« Efficient in encoding of sparse data

« Suited for representing data based on pairwise relationships (e.g.
affinities, distances)

« A positive symmetric matrix can be represented as a graph
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Affinity and distance

An affinity score between two objects x;, x; is "high” if the
objects are “very similar”

— E.g. the Gaussian kernel  s(i,j) = exp (—”xz—;f'ﬂ)

A distance score between two objects x, y is “small” if the
objects are “close” to each other

— E.g. the Euclidean distance d(i,j) = ||x; — ijI

Distances and affinities have an inverse relationship high
affinity < low distance

A distance can be turned into an affinity by using an appropriate
kernel

Many choices of kernels. One of the most important choices in
spectral clustering



Graph basics

« Definition: A graph G is a triple consisting of a vertex set V(G),
an edge set E(G) and a relation that associates with each edge
two vertices.

In spectral
clustering we
always work with
undirected graphs

Simple undirected graph Complete graph
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Graph basics

Adjacency matrix W of undirected graph

* NxN symmetric binary matrix

« rows and columns represent the vertices and entries represent the
edges of the graph.

« Simple graph = zero diagonal
W(i,j) = 0if i,j are not connected

W(i,j) = 1if i,j are connected o [xJoJofoJa]a]o ]2
1|02 |2 |2]|0]|0]|O0]O
o1 |o 21|20 |0 ]f0]0O
o1 |1 (|02 ]0]|O0]|O]O
o122 |00 |0 |0]0O
1 |/0f1]|o0o|0|0 |1 |1]0O
1 {0 |0 |0 |0 (1|01 ]1
o|lo|o|o|of21 |1 ]0]0O
1|/o0]o|o|o|o|a]o]oO
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Graph basics

Affinity matrix A of undirected graph

* Weighted adjacency matrix
« Each edge is weighted by pairwise vertex affinity

A(i,j) =0if i,j are not connected
A(i,j) = s(i,j) if i,j are connected

« By adjusting the kernel parameter we can set the affinity of
dissimilar vertices to zero and essentially disconnect them



Graph basics

Degree matrix D of undirected graph

* NxN diagonal matrix that contains information about the degree of each
vertex

« Degree d(vi) of a vertex v, of a graph is the number of edges incident
to the vertex. Loops are counted twice

D(@i,j)=0if i #j

4 lololoflolofo]o]o
D(i,j) =dw)ifi=j = D =diag(d,, .., dy) of(3|o|lofo]ofo]|o]|o
ololalolo|o|o]o]o
ololol3a|o|lo|o]o]o
olololol3a|o|o]o]o
ololololola|o]o]o
ololololo|ofa]o]o
ololololo|o|ola]o
olololo|lo|o|ofo]2
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* Graph basics

Laplacian matrix of simple undirected graph

L = D — A (Degree — Affinity) (Unnormalised)
L i1s symmetric and positive semi-definite

 The smallest eigen-value is O, the corresponding eigen-
vector iIs the constant one 1

* N non-negative real-valued eigen-values
O:/‘{1S/12S”'SAN

« The smallest non-zero eigenvalue of L is called the spectral

gap.
« Laplacian has a complete set of orthonormal eigen—vectors
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| Graph construction

« There are different ways to construct a graph representing
the relationships between data points :

— Fully connected graph: All vertices having non-null similarities are
connected each other

— r-neighbourhood graph: Each vertex is connected to vertices falling
inside a ball of radius r where r is a real value that has to be tuned in
order to catch the local structure of data.

— k-nearest neighbour graph: Each vertex is connected to its k-
nearest neighbours where k is an integer number which controls the
local relationships of data.

 Different graph constructs reprensent different local-
structure of the data
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Graph construction — Examples
k-nearest neighbour graphs
« Given data points and their pairwise affinities A(i, j)
« Connect each point to its k-nearest neighbours
« Weigh the edges by the affinity score

« Generally graph is directed and non-symmetric
(neighbourhood relationship is not symmetric)

« Example 2-nearest neighbours
‘ /
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Graph construction — Examples
Undirected k-nearest neighbour graphs

« Make a directed graph to an undirected using "AND” or
"OR” operations

« The symmetric kNN graph connects A with Bif A - B or
B—-A

 The mutual KNN graph connects A with B if A - B and
B-A

Mutual
KNN graph
KNN graph
/'. ‘\ Symmetric
<H O kNN graph @
. /
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Graph construction — Examples
Undirected k-nearest neighbour graphs

kNN graph k=35 Mutual kNN graph, k =5

Symmetric KNN Mutual KNN

« The mutual kNN graph is a subset of the symmetric kNN
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Graph construction — Examples
r-neighbourhood graph
« Given data points and their pairwise affinities A(i, j)

« Connect each point to all other points that have affinity
above a threshold r

« Weigh the edges by the affinity score or use unweighted
graph
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Graph spectrum

* Spectrum is the multiset of the eigen—-values of the
Laplacian matrix or the graph associated with it
— Al (L] At
where 4, ... A, is the set of distinct eigen—values
and m, ...mt their multiplicities.

« Laplacian matrix depends on the vertex labelling, its
spectrum is invariant (i.e. does not depend on the
representation)

« Multiplicity of O eigen-value is the number of connected
components k of the graph (i.e. clusters)

« The eigen-space is spanned by the indicator vectors
1,,..,1, ~of those components
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Clustering as a graph-theoretic problem

e ( agraph with vertex setV = {v,, ..., vy}
e SubsetZcV
c A(Z,Z)) = Ziezi,jezj,A(i»]') forZ,Z;cV
e |Z|: number of vertices in Z
e vol(Z) = );c;D; : volume of Z
* l.e. sum of the weights of all edges attached to vertices in Z

 All vertices that can be reached from each other by

a path form a connected component (.e.no
connections between Z and Z. Z is the complement of Z)

* The non-empty sets Z,, ..., Z, form a partition of the
graphitZ,nZ,=¢andZ,u--UZ, =V
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Node volume vs Set (cluster) volume

 Node volume X,

N
D; = A(L, j)
j=1
l.e. weighted sum of all of the

edges connected to the node

» Set (cluster) volume
vol(Z) = z ZDi Z

l.e. sum of the weights of all edges
attached to vertices in Z
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Clustering as a graph-theoretic
problem

« Given a similarity graph with affinity matrix A the simplest
way to construct a partition is to solve the min-cut problem:

— Choose the partition Z, ..., Z, that minimises

k
1 _
cut(Zy, ..., Z,) = Ez A(Z,Z) whereA(Z,,Z,) = z A(i, ))
i=1

i€z jez,
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Clustering as a graph-theoretic
problem — An example

* We require 2 clusters
 Itis obvious we need to cut at least 2 edges

——————

A -7 Bl B/’”# H“\.
"" .“\'\ 0-1 f! \\
/ D 7 ® o8
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e e L@ ©;
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Clustering as a graph-theoretic
problem — An example

* We require 2 clusters
 Itis obvious we need to cut 2 edges

o cut(4, B) =3 Y;cyjcp Affinity(4,B) = 0.3

T - Ny -

A =TT T~ o Il B o e

/J"'f \'.\ 0-1 / f! \'\_

/ 0.8 @ R II / @ 0.8

/ 3 / ! 0.8 \
! 1 / I \
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i ! / t\ F
“\ / / \ 0.7 o
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Clustering as a graph-theoretic
problem

* Min-cut can be solved efficiently especially for k = 2

« Does not always lead to reasonable results if the
connected components are not balanced

 Workaround: Ensure that
the partitions Z,, ..., Z,, are
sufficiently “large”

Z; e This should lead to more

balanced partitions
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Clustering as a graph-theoretic problem

« Ratio-cut [Hagen and Kahng, 1992]: The size of a subset Z is measured
by its number of vertices |Z]

~ k
AZ,Z)) _ z cut(Z,Z;)

RatioCut(Z,, Z—z
atioCut( o) > Z]

« Normalised cut [Shi and Malik, 2000]: The size of a subset Z is

measured by the weights of its edges vol(Z)
k

” - _
CINCAZLZ) O cout(Z,Z)
NCut(Z,,...,Z;) = 2; vol(Z) Z vol(Z,)

i=1

« Min-max cut [Ding et al. 2001]:

k — k —_
I1NAZ,2) cut(Z,, Z,)
Min — Max — Cut(Z,, ..., Z,) == o pi

1 k 2i=1A(Zi'Zi) L A(Z,Z)
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Clustering as a graph-theoretic problem

Due to the normalisations introduced the solution becomes NP-hard

Relaxing Ncut and Min—Max—Cut lead to normalised spectral clustering.
Relaxing RatioCutleads to unormalised spectral clustering [von Luxburg
2007]

Relaxed RatioCut solution: eigenvectors
X = (171, 172, ...,vk) S. t. (D - W)‘Uk = Akvk Where L = D - A

Relaxed Ncut solution: eigenvectors
Y = (ug, uy, ..., ) s.t. (I — Ly )w, = A, where L, =D %°AD™%3

Relaxed Min-Max-cut solution: eigenvectors
Y = (ug,uy, ..., wy) s.t.  Lgu, = Ay where L, =D %°AD™0>

Quality of solution of relaxation is not guaranteed compared to exact solution



@
Spectral clustering Method #1

[Perona and Freeman 1999]

 Partition using only one eigenvector at a
time
» Use procedure recursively

— Uses 2" (smallest) eigenvector to define
optimal cut

— Recursively generates two clusters with
each cut
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Spectral clustering Method #2

[Shi and Malik 2000, Scott and Longuet-Higgins, Ng et al. 2002]

« Use k smallest eigenvectors
* Directly compute k-way partitioning
« Usually performs better

* We will be using this approach from
now on
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A spectral clustering algorithm

Input: Data matrix P € RV*F (N =data points, F = dimensions),
k number of clusters

« Construct pairwise affinity matrix A(i, j) = exp (— lez_;,ﬂ)

« Construct degree matrix D = diag(d,, ..., dy)

« Compute Laplacian L = D — A (unormalised)

« Compute the first k eigen-vectors u,, ..., u, of L

« Let U € RVN*k contain the vectors u,, ..., u, as columns

* Let y, € R¥ be the vector corresponding to the i-th row of U

* Cluster the points (y;) i=1,..,nInto k clusters h,, ..., h, with K-means

Output: Clusters Z,, ... Z, with Z; = {i|y, € h;}
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K-means

 Basic clustering algorithm. Given a set of observations x,, ... x,, partition
Into k clusters s.t. the within cluster sum of squares (distortion) is
minimised

k

arg minz z llx; — wl2

i=1 ijCi

* NP-hard. Iterative algorithm available

1.

a s~ b

Initialise k clusters

Calculate cluster means g,

Calculate distances of each point x; to each cluster mean p,
Assign point to nearest cluster

Goto 2 until convergence

« Number of clusters need to be known. Gives convex clusters
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- Why not just use K-means?

* One could use K-means directly on the affinity matrix (or
some other clustering approach such as mean shift)

« S.C. separates data while projecting in the low-dimensional
space

« Allows clustering of non-convex data

Before spectral clustering After spectral clustering



Juter Vision Laboratory

Why not just use K-means?

K-means

Spectral clustering

wo circles, 2 clusters (K-means)

twocircles, 2 clusters

o
" "_'t.- “"hk‘s"”}' x
e “Fx
* Qn X s
& g
& o &

We do K-means
here instead
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Rows of Y (jitlered, randomly subsampled) for twocircles

»
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Simple example revisited

* Now we will use spectral clustering instead
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Step 1: Pairwise affinity matrix
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Step 2: Laplacian matrix
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Step 3: Eigen-decomposition

* Eigen-values A=

* Eigen-vectors v =

U -

N X k

0 I+
248 [
0.18
2 -
2.08 15l
1 -
2.28
0akF
L ]
2.46 | o
2.57 0 > 5 :
-0.4082 0.4084
-0.4082 0.4418
-0.4082 0.3713
-0.4082 -0.3713
-0.4082 -0.4050
-0.4082 -0.4452




Step 4: Embedding

e U= -0.4082 0.4084 « Eachrow of Y is a point in eigen-
-0.4082 0.4418 sSpace
0.4082 03713
0.4082 09713
0.4082 0.4050
0.4082 0.4452

e Y =row_normalise(U) /@

-0.7070 0.7072
A_

-0.6786 0.7345

02F
-0.7398 0.6729 ol
-0.7398 -0.6729 n2f
-0.7099 -0.7043 04l

-0.6759 -0.7370 oer ﬁ
1 1 1 1 1 %' 1




Step 5: Clustering

« K-means clustering with 2 clusters
« Easy, convex clustering problem
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Simplex spectral embedding

« Compute k eigen-vectors of the Laplacian.
« Embed objects in the k-dim eigen-space

* In the embedded space, objects aggregate to k distinct
centroids:

— Centroids locate on k corners of a simplex
— Simplex consists k basis vectors + coordinate origin

— Simplex is rotated by an orthogonal transformation
matrix T = (t,, ..., t},)

— Columns of T are eigenvectors of a k x k embedding
matrix ' with T't, = A, t,

— Eigenvalues of I' = eigenvalues of L=D — A
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"K-means Clustering in Eigen-space

« Simplex spectral embedding theorem provides
theoretical basis for K-means clustering in the
embedded eigenspace

— Cluster centroids are well separated (corners of the
simplex)

— K-means clustering is invariant under (i) coordinate
— rotation x - Tx, and (i) shiftx - x + a

— Thus orthogonal transform T in simplex embedding is
Irrelevant
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Choices choices...

* Affinity matrix construction (distance and kernel)

* Choice of kernel parameter ¢ (scaling factor)

— Practically, search over o and pick value that
gives the tightest clusters

 Choice of k, the number of clusters

* Choice of clustering method
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Summary

 We have seen so far
— Basic definitions of cluster, clustering and cluster quality
— Graph basics, affinity, graph construction, graph spectrum
— Graph cuts
— Spectral clustering and graph cuts
— A spectral clustering algorithm and a simple example
— K-means and spectral clustering

* For the next lecture
— Intuitive explanation of different S.C. algorithms



