Spectral clustering

Lecture 2
Spectral clustering algorithms

Indicator vectors

 Each cluster has an indicator vector, represented by a binary vector that contains ``1'' for points in the cluster and ``0'' otherwise:

$$\mathbf{c}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{c}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

Indicator vectors of distinct clusters musbe orthogonal!

A simple example

• Two ideal clusters, with two points each

A simple example

• Clearly, we can decompose A as

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\mathbf{c_1} \text{ and } \mathbf{c_2}$$

$$\mathbf{A} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 1 \end{pmatrix}$$

Eigensystem of A

• An eigenvalue decomposition of **A** gives

$$\label{eq:normalized eigenvectors} \begin{aligned} \text{normalized eigenvectors} &= \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix} \\ \text{corresponding eigenvalues} &= \begin{pmatrix} 2 & 2 & 0 & 0 \end{pmatrix} \end{aligned}$$

Permutations of A

• Two ideal cluster, with two points each

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

Initial idea

- To each cluster there is a non-zero eigenvalue in A
 - Number of clusters = number of non-zero eigenvalues in A
- To each such eigenvalue/cluster, the corresponding normalized eigenvector is a scaled version of the corresponding indicator vector

Eigensystem of permuted A

• An eigenvalue decomposition of **A** gives

$$\mbox{normalized eigenvectors} = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\mbox{corresponding eigenvalues} = \begin{pmatrix} 2 & 2 & 0 & 0 \end{pmatrix}$$

Initial idea holds: permutations of the points carries over to permutations of the elements of the eigenvectors

Eigensystem of permuted A

In an algebraic sense:

- The goal of spectral clustering is to determine the permutation of A that turns it into a block diagonal form
- This is done by analyzing the eigensystem of A

A glitch (I)

- In this case: the non-zero eigenvalues are equal
 - Any linear combination of the first two eigenvectors is also an eigenvector of the same eigenvalue
 - Any small perturbation of A can make a large change in the eigenvectors
 - Eigenvectors will not correspond to the indicator vectors

11

A glitch (I)

$$\mathbf{A} = \begin{pmatrix} 1 & 0.99 & 0.01 & 0.02 \\ 0.99 & 1 & 0.01 & 0.03 \\ 0.01 & 0.01 & 1 & 0.98 \\ 0.02 & 0.03 & 0.98 & 1 \end{pmatrix}$$

Again ideally ordered but with some noise

Approximate numerical values

$$\text{normalized eigenvectors} = \begin{pmatrix} 0.53 & -0.46 & -0.28 & 0.65 \\ 0.54 & -0.46 & 0.27 & -0.65 \\ 0.46 & 0.54 & -0.65 & -0.27 \\ 0.47 & 0.53 & 0.65 & 0.27 \end{pmatrix}$$

$$\text{corresponding eigenvalues} = \begin{pmatrix} 2.02 & 1.95 & 0.02 & 0.01 \end{pmatrix}$$

A glitch (I)

- It is still the case the there are two dominant eigenvalues, corresponding to the two separate clusters
- But the corresponding eigenvectors do not directly reveal the points of each cluster
 - A linear combination of them, however, will!

10

Fixing the glitch (I)

• Define, for *n* points and *k* clusters:

 $\mathbf{U} = n \times k$ matrix containing the normalized eigenvectors of the k largest eigenvalues of \mathbf{A} in its columns

Each row in **U** corresponds to a data point

Fixing the glitch (I)

• In the last numerical example:

= **U**

We notice that rows of **U** corresponding to the same cluster are approximately equal

13

Fixing the glitch (I)

A clustering algorithm

- Assume *n* points and *k* clusters
- Compute $n \times n$ affinity matrix **A**
- Compute the eigensystem of A
- There should be *k* non-zero eigenvalues
- Set **U** to hold the corresponding normalized eigenvectors in its columns
- Apply k-means clustering on the row space of
 U to find the k clusters

An observation

- The self-affinity of each point is a constant value found in the diagonal of **A**
- Changing this constant means adding a term to **A** that is proportional to the identity matrix:

$$\mathbf{A'} = \mathbf{A} + \alpha \mathbf{I}$$

An observation

- In the literature it is common to set the self-affinity to zero
 - All diagonal elements of **A** are zero
- The phrase
 "k eigenvalues of A are non-zero"
 should then be replaced by
 "k eigenvalues of A are large"

An observation

• A and A' have the same eigenvectors but their eigenvalues differ:

$$\mathbf{A'}_{k} = \lambda_{k} + \alpha \qquad \qquad \mathbf{A'} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Same eigenvectors as before

With α = -1

corresponding eigenvalues = $\begin{pmatrix} 1 & 1 & -1 & -1 \end{pmatrix}$

18

An observation (II)

In the previous numerical example:

 Not only are the row vectors of U for points in different clusters distinct, they are orthogonal

• This is not a coincidence!

An observation (II)

• Assuming that the k largest eigenvalues of A are approximately equal (to λ):

$$\mathbf{A} + \alpha \mathbf{I} = \lambda \mathbf{U} \mathbf{U}^\mathsf{T}$$

The inner product of rows from different clusters correspond to zero affinity in an ideal A

In the ideal case: rows in **U** belonging to different clusters must be orthogonal

- But not necessarily of unit length!
- The k-means clustering step should be robust

A clustering algorithm (II)

- Assume *n* points and *k* clusters
- Compute $n \times n$ affinity matrix **A** (0 in diagonal!)
- Compute eigensystem of A
- There should be k "large" eigenvalues which are approximately equal
- Set **U** to hold the corresponding normalized eigenvectors in its columns
- Apply k-means clustering on the row space of U to find the k clusters

21

22

Fiedler's method for k = 2

- The Laplacian L always (even for noisy data) has an eigenvalue $\lambda_1 = 0$
- Corresponding eigenvector e₁ is 1
- If k = 2, there should be a second eigenvalue = 0, or at least close to zero
- Corresponding eigenvector denoted **e**₂
- The row space of {**e**₁, **e**₂} should form clusters in two orthogonal directions

Fiedler's method for k = 2

- Consequently, the signs of the elements in **e**₂ must be indicators of the two classes
- For example:

"+" means class 1

"-" means class 2

- We don't really need **e**₁
- Only the signs of the elements in **e**₂
 - **e**₂ is often referred to as the *Fiedler vector*

An observation (III)

- Using the "larger" or "significant" eigenvalues of A can be replaced with looking for zero or close-to-zero eigenvalues of related matrices
- We need to modify A accordingly
- Leads to the Laplacian L of A, and we do clustering based on the eigensystem of L instead of A

Degree matrix

We define

D = diagonal matrix { d_{ii} } where d_{ii} = sum of row/column i in **A**

as the degree matrix of A

A simple example

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} \qquad \mathbf{D} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

$$\mathbf{c}_1 = \begin{pmatrix} 1\\1\\0\\0\\0 \end{pmatrix} \quad \mathbf{c}_2 = \begin{pmatrix} 0\\0\\1\\1\\1 \end{pmatrix}$$

relative both A and D

Laplacian

Formally, we define

$$L = D - A$$

as the Laplacian of A

• The indicator vectors are eigenvectors also of L, with eigenvalue 0

25

Properties of L

In the ideal case:

- L has the same eigenvectors as A and D
- L has eigenvalues = 0 for the indicator vectors

In general (also with noise):

 $a_{
m ii} \geq 0$ for affinity matrix $m{ extit{A}}$

$$\mathbf{u}^T \mathbf{L} \mathbf{u} = \frac{1}{2} \sum_{i,j=1}^n a_{ij}^{\prime} (u_i - u_j)^2$$

L is positive semi-definite!

29

Properties of L

In the general case (also with noise):

- Sum along rows/columns of **L** vanishes
- There is always one eigenvalue = 0 in L
- Corresponding eigenvector = is 1 (constant 1)
 - 1 is the sum of all indicator vectors!

30

Properties of L

From this follows:

- If u is a cluster indicator vector ⇒
 u is an eigenvector of L with eigenvalue 0
- If u is an eigenvector of L with eigenvalue 0 ⇒
 u is a linear combination of the cluster indicator
 vectors

From this follows:

- 1. The number of eigenvalues = 0 in \mathbf{L} is = k (k= number of clusters)
- 2. The corresponding eigenvectors span the space of indicator vectors

A clustering algorithm (III) Unnormalized spectral clustering

- Assume *n* points and *k* clusters
- Compute $n \times n$ affinity matrix **A**
- Compute **D**, and compute **L** = **D A**
- Compute eigensystem of L
- There should be *k* "zero" eigenvalues
- Set U to hold the corresponding normalized eigenvectors in its columns
- Apply k-means clustering on the row space of U to find the k clusters

An observation (IV)

- Should we do clustering on A or on L?
- For ideal data
 - full connections internally in each segment
 - no connects between segmentsthere is, in general, no difference in the result
- For non-ideal data, (= in practice) the results differ
 - Normally: clustering on L is better!

33

-

A numerical example

Analysis

- It can be shown that the clustering on **A** is equivalent to solving the *mincut* problem of the corresponding graph [see von Luxburg]
- Prefers to cut fewer edges, even if they have higher affinity, than more edges even when each has lower affinity
- In our example: there is a risk of cutting the edge between point 1 and the rest of the points in the first cluster

Analysis

- It can be shown that the clustering on L is for k = 2 approximates the solution of the Ratio-cut problem of the corresponding graph [see von Luxburg]
- Normalizes the cost of a cut with the number of vertices of each sub-graph
- In our example: reduces the risk of cutting the edge between point 1 and the rest of the points in the first cluster

A glitch (II)

- The last clustering algorithm works well for arbitrary k, but assumes that the number of points in each cluster, n_k , is approximately equal
- Otherwise, eigenvalues which are "zero" and "non-zero" may mix in the data of real data

37

A simple example

• An ideal **A** with k = 2 and n_1 and n_2 points in each cluster

A simple example

• Eigensystem of A

$$\mathbf{c}_1 = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \mathbf{c}_2 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad n_1$$

$$\mathbf{c}_2 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad n_2$$

$$\mathbf{c}_2 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad n_2$$

$$\mathbf{c}_3 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad n_2$$

$$\mathbf{c}_4 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad n_2$$

$$\mathbf{c}_4 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad n_2$$

A simple example

41

A simple example

• Eigensystem of **D**

$$\mathbf{c}_{1} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \mathbf{c}_{2} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad n_{1}$$

$$\begin{pmatrix} \mathbf{n}_{1} \\ \vdots \\ 0 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad n_{2}$$

$$\begin{pmatrix} \mathbf{n}_{1} - 1 & n_{2} - 1 & \dots & n_{1} - 1 \\ & & &$$

A simple example

• Eigensystem of **L**

$$\mathbf{c}_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \mathbf{c}_{2} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad n_{1} \qquad \qquad n_{2} \qquad \qquad n_{2}$$

$$\begin{pmatrix} \mathbf{0} \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{n}_{1} \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{n}_{1} \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{n}_{2} \\ \vdots \\ \mathbf{n}_{2} \\$$

A glitch (II)

- For this example:
 - There are 2 eigenvalues approximately = 0
 - There are n_1 1 eigenvalues approximately = n_1
 - There are n_2 1 eigenvalues approximately = n_2
- If $n_2 >> n_1$ and with sufficiently noisy data:
 - The first two types of eigenvalues can mix
 - Also their eigenvectors will mix
 - Poor clustering performance

Fixing the glitch (II)

- There are (at least) two ways of fixing this glitch, where both normalize the Laplacian L before computing the eigensystem:
 - Normalized spectral clustering according to Shi & Malik (2000)
 - Normalized spectral clustering according to Ng et al (2002)

Fixing the glitch (II)

• Consider the generalized eigenvalue equation:

$$Lu = \lambda Du$$

Since **L** and **D** share eigenvectors, any such eigenvector is also an eigenvector of this generalized eigenvalue equation

- Eigenvalues are different!

45

A simple example

Using the previous example:

- The indicator vectors c₁ and c₂ are both eigenvectors of L, with eigenvalues 0
 - They are also generalized eigenvectors of (L, D), with eigenvalue 0
- The remaining eigenvectors of L have eigenvalues n₁ (n₁ 1 copies) or n₂ (n₂ 1 copies)

A simple example

• The eigenvalues of the remaining generalized eigenvectors relative (L, D) are then given by

$$n_k / (n_k - 1)$$

 This provides a normalization of the eigenvalues that makes the clustering less sensitive to the cluster sizes

A clustering algorithm (IV) Normalized spectral clustering (Shi-Malik)

- Assume *n* points and *k* clusters
- Compute $n \times n$ affinity matrix **A**, and its **D**
- Compute **L** = **D A**
- Compute generalized eigensystem of (L, D)
- There should be *k* "zero" eigenvalues
- Set U to hold the corresponding normalized eigenvectors in its columns
- Apply k-means clustering on the row space of U to find the k clusters

An observation (V)

• We notice that the eigensystem of

$$Lu = \lambda Du$$

is the same as for the standard eigenvalue problem

D-1 **L u** =
$$\lambda$$
 u

50

An observation (V)

• We define a normalized Laplacian as

$$L_{rw} = D^{-1}L$$

- Referred to as the normalized random walk
 Laplacian [see von Luxburg for explanation]
- In general: **L** is not symmetric!
 - is symmetric in the ideal case!

A clustering algorithm (V) Variant of Shi-Malik

- Assume *n* points and *k* clusters
- Compute $n \times n$ affinity matrix **A**, and its **D**
- Compute L = D A
- Compute $L_{rw} = D^{-1}L$
- Compute eigensystem of L_{rw}
- There should be *k* "zero" eigenvalues
- Set **U** to hold the corresponding normalized eigenvectors in its columns
- Apply k-means clustering on the row space of U to find the k clusters

An observation (VI)

 Alternatively, we define a normalized Laplacian as

$$L_{\text{sym}} = D^{-1/2} L D^{-1/2}$$

• Referred to as the *normalized symmetric* Laplacian

53

A glitch (III)

A simple example with three ideal clusters

- n_1 , n_2 , n_3 points each
- The indicator vectors **c**₁, **c**₂, **c**₃ are eigenvectors of \mathbf{L}_{sym} with eigenvalue 0
- Normalized to unit norm they become

$$\hat{\mathbf{c}}_{1} = \begin{pmatrix} 1/\sqrt{n_{1}} \\ \vdots \\ 1/\sqrt{n_{1}} \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \hat{\mathbf{c}}_{2} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1/\sqrt{n_{2}} \\ \vdots \\ 1/\sqrt{n_{2}} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \hat{\mathbf{c}}_{3} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1/\sqrt{n_{3}} \\ \vdots \\ 0 \\ 1/\sqrt{n_{3}} \end{pmatrix} - n_{2}$$

An observation (VI)

- Is symmetric and has the same eigenvalues as \mathbf{L}_{rw} in the ideal case: $\{0, n_k / (n_k - 1)\}$
- In general, if **v** is an eigenvector of **L**_{rw}, then $\mathbf{D}^{1/2}\mathbf{v}$ is an eigenvector of \mathbf{L}_{sym}
- The cluster indicator vectors are eigenvectors also of \mathbf{L}_{sym} , with eigenvalues = 0
- We can consider the eigensystem of L_{sym} instead!

A glitch (III)

- In the practical case, these is some noise and the three eigenvectors if \mathbf{L}_{sym} corresponding to eigenvalue "zero" are linear combinations of the previous vectors
 - Normalized linear combinations!
 - Correspond to rotations of the previous vectors
 - Therefore we do k-means clustering on the row space of **U** to find the clusters
 - If n_1 , n_2 , n_3 are of different magnitudes:
 - Clusters with many points are found close to the origin

Fixing the glitch (III)

- We normalize the rows of U before the final k-means clustering
- The resulting rows lie on a unit hyper-sphere
- This leads to a better separation of the clusters in the row space of U
- We return to the issue of clustering points on a sphere in the following lecture

A clustering algorithm (VI) Ng et al (2002)

- Assume *n* points and *k* clusters
- Compute $n \times n$ affinity matrix **A**, and its **D**
- Compute **L** = **D** − **A**
- Compute $L_{sym} = D^{-1/2} L D^{-1/2}$
- Compute eigensystem of L_{sym}
- There should be k "zero" eigenvalues
- Set U to hold the corresponding normalized eigenvectors in its columns
- Set **T** = **U** but with each row normalized to unit norm
- Apply k-means clustering on the row space of T to find the k clusters

58

Does it matter with algorithm we use?

- The unnormalized algorithm is attractive since it is simple, but
 - Use it only when you know that the clusters have the same order of points
- The other two are approximately of the same order of additional computations
 - Von Luxburg suggests using \mathbf{L}_{rw} instead of \mathbf{L}_{sym} as the normalized Laplacian
 - In practice \mathbf{L}_{sym} appears to work as well

Does it matter with algorithm we use?

• For large set of data, the Shi-Malik approach has the advantage of an implicit normalization by solving a generalized eigenvalue problem:

$$Lu = \lambda Du$$

without having to modify any matrix, and may therefore be faster than using normalized Laplacians

Summary

- 3 basic algorithms for spectral clustering
 - Unnormalized: **L u** = λ **u**
 - Shi-Malik
 - Generalized eigenvalue problem: **L u** = λ **D u**
 - Standard eigenvalue problem: $\mathbf{L}_{rw} \mathbf{u} = \lambda \mathbf{u}$
 - Ng, et al: $\mathbf{L}_{\text{sym}} \mathbf{u} = \lambda \mathbf{u}$
- Spectral properties of A, D, L
 - Relations to the cluster indicator vectors

Next lecture

- Practical aspects, parameter tuning
- Extensions of spectral clustering algorithms
- Applications to real problems
 - Mainly in computer vision