Spectral clustering

A simple example

e Two ideal clusters, with two points each
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Spectral clustering algorithms
e |deally permuted /
* |deal affinities
Indicator vectors A simple example
* Each cluster has an indicator vector, e Clearly, we can decompose A as
represented by a binary vector that contains 110 0
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Eigensystem of A

e An eigenvalue decomposition of A gives
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normalized eigenvectors = ‘62 ) 6/5 1
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V2 V2
corresponding eigenvalues = ( 2 2 0 0 )

Initial idea

* To each cluster there is a non-zero eigenvalue
in A
= Number of clusters = number of non-zero

eigenvaluesin A

* To each such eigenvalue/cluster, the
corresponding normalized eigenvector is a
scaled version of the corresponding indicator
vector

Permutations of A

* Two ideal cluster, with two points each
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Eigensystem of permuted A

* An eigenvalue decomposition of A gives

1 1
z 0 7 0
0o L 0 1
normalized eigenvectors = 1 \6 2 1 V2
VZ 2
0o L o =L
V2 V2
corresponding eigenvalues = ( 2 2 0 0 )

Initial idea holds: permutations of the points carries over to
permutations of the elements of the eigenvectors




Eigensystem of permuted A

In an algebraic sense:

* The goal of spectral clustering is to determine
the permutation of A that turns it into a block
diagonal form

e This is done by analyzing the eigensystem of A

A glitch (I)

* In this case: the non-zero eigenvalues are
equal

— Any linear combination of the first two
eigenvectors is also an eigenvector of the same
eigenvalue

— Any small perturbation of A can make a large
change in the eigenvectors

— Eigenvectors will not correspond to the indicator
vectors

A glitch (1)

Again ideally ordered
but with some noise

1 099 0.01 0.02\ "
099 1 001 0.03
001 001 1 0.98
0.02 0.03 098 1

A=

| Approximate numerical values

¥

0.53 —-046 —-0.28 0.65
0.54 -046 0.27v —-0.65
0.46 054 —-0.65 —0.27
0.47 0.53 0.65  0.27

normalized eigenvectors =

corresponding eigenvalues = (2.02 1.95  0.02  0.01 )

A glitch (1)

* Itis still the case the there are two dominant
eigenvalues, corresponding to the two
separate clusters

* But the corresponding eigenvectors do not
directly reveal the points of each cluster
— A linear combination of them, however, will!




Fixing the glitch (I)

e Define, for n points and k clusters:

U = n X k matrix containing the normalized
eigenvectors of the k largest eigenvalues of A
in its columns

— Each row in U corresponds to a data point

Fixing the glitch (I)

* In the last numerical example:

0.53 —-046| —0.28 0.65
0.564 —-046| 0.27 —0.65
0.46 0.54 | —-0.65 —-0.27
0.47 0.53 0.65 0.27

We notice that rows of
U corresponding to the
same cluster are
approximately equal
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Fixing the glitch (1)

Points belonging to the
same cluster clusters in
the row space of U

Use k-means clustering
to find these clusters in
the row space of U

Cluster points are
rotated compared to

the previous case

A clustering algorithm

Assume n points and k clusters

Compute n x n affinity matrix A

Compute the eigensystem of A

There should be k non-zero eigenvalues

Set U to hold the corresponding normalized
eigenvectors in its columns

Apply k-means clustering on the row space of
U to find the k clusters




An observation

* The self-affinity of each point is a constant
value found in the diagonal of A

e Changing this constant means adding a term

to A that is proportional to the identity matrix:

A=A+al

An observation

e A and A’ have the same eigenvectors but their
eigenvalues differ:

0O 1 0 O
0 0 0 1
0 0 1 O
| Same eigenvectors as before |
corresponding eigenvalues = ( 1 1 -1 -1 )

An observation

* In the literature it is common to set the
self-affinity to zero
— All diagonal elements of A are zero

* The phrase
“k eigenvalues of A are non-zero”
should then be replaced by
“k eigenvalues of A are large”

An observation (ll)

In the previous numerical example:

* Not only are the row vectors of U for points in
different clusters distinct, they are orthogonal

Y
S

e This is not a coincidence!




An observation (ll)

Assuming that the k largest eigenvalues of A are
approximately equal (to A):

The inner product of rows from

A+al=\XUUT « different clusters correspond to

zero affinity in an ideal A

In the ideal case: rows in U belonging to different
clusters must be orthogonal

— But not necessarily of unit length!
The k-means clustering step should be robust

A clustering algorithm (Il)

Assume n points and k clusters
Compute n x n affinity matrix A (0 in diagonal!)
Compute eigensystem of A

There should be k “large” eigenvalues which are
approximately equal

Set U to hold the corresponding normalized
eigenvectors in its columns

Apply k-means clustering on the row space of U
to find the k clusters

Fiedler’s method for k=2

The Laplacian L always (even for noisy data)
has an eigenvalue A\, =0

Corresponding eigenvector e, is 1

If k = 2, there should be a second eigenvalue
=0, or at least close to zero

Corresponding eigenvector denoted e,

The row space of {e,, e,} should form clusters
in two orthogonal directions

Fiedler’s method for k=2

Consequently, the signs of the elements in e,
must be indicators of the two classes

For example:

“+” means class 1

““” means class 2

We don’t really need e,

Only the signs of the elements in e,

= ¢, is often referred to as the Fiedler vector




An observation (lll)

e Using the “larger” or “significant” eigenvalues
of A can be replaced with looking for zero or
close-to-zero eigenvalues of related matrices

* We need to modify A accordingly

e Leads to the Laplacian L of A, and we do
clustering based on the eigensystem of L
instead of A

Degree matrix

* We define

D = diagonal matrix { d; }
where d,; = sum of row/columniin A

as the degree matrix of A

A simple example

0O 1 0 0 O 1 0 0 0 O
1 0 0 0 O 01 0 0 O
A=10 0 0 1 1 D=|0 0 2 0 O
0O 01 0 1 0 0 0 2 0
0O 01 1 0 0 0 0 0 2
1 0 In the ideal case:
1 0 The indicator vectors are
cp = 0 Ccy = 1 eigenvectors both to A and D
0 1 and have eigenvalues {1, 2}
0 1 relative both A and D

Laplacian

e Formally, we define
L=D-A
as the Laplacian of A

* The indicator vectors are eigenvectors also of
L, with eigenvalue 0




Properties of L

In the ideal case:
* L has the same eigenvectors as A and D

* L has eigenvalues = 0 for the indicator vectors
In general (also with noise):

a; > 0 for affinity matrix A |

1 /
u'Lu= 5 Z aij(u; — uj)?

1,j=1

L is positive semi-definite! |

Properties of L

In the general case (also with noise):
e Sum along rows/columns of L vanishes
e There is always one eigenvalue =0in L

e Corresponding eigenvector = is 1 (constant 1)
= 1 is the sum of all indicator vectors!

Properties of L

From this follows:

1. Ifuis a cluster indicator vector =
u is an eigenvector of L with eigenvalue 0

2. Ifuis an eigenvector of L with eigenvalue 0 =
u is a linear combination of the cluster indicator
vectors

From this follows:

1. The number of eigenvalues=0inLis=k
(k= number of clusters)

2. The corresponding eigenvectors span the space
of indicator vectors

A clustering algorithm (1)
Unnormalized spectral clustering

e Assume n points and k clusters

e Compute n x n affinity matrix A

e Compute D, and computeL=D-A

e Compute eigensystem of L

* There should be k “zero” eigenvalues

e Set U to hold the corresponding normalized
eigenvectors in its columns

* Apply k-means clustering on the row space of U
to find the k clusters




An observation (IV)

e Should we do clustering on A or on L?
* Forideal data

— full connections internally in each segment
— no connects between segments

there is, in general, no difference in the result

e For non-ideal data, (= in practice) the results
differ

— Normally: clustering on L is better!

A numerical example

A numerical example

Possibly mis-classified
Perturbed data point in k-mean clustering
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Two well-separated cluster

Analysis

* |t can be shown that the clustering on A is
equivalent to solving the mincut problem of
the corresponding graph [see von Luxburg]

» Prefers to cut fewer edges, even if they have
higher affinity, than more edges even when
each has lower affinity

* In our example: there is a risk of cutting the
edge between point 1 and the rest of the
points in the first cluster




Analysis

* It can be shown that the clustering on L is for
k = 2 approximates the solution of the
Ratio-cut problem of the corresponding graph
[see von Luxburg]

* Normalizes the cost of a cut with the number
of vertices of each sub-graph

* In our example: reduces the risk of cutting the
edge between point 1 and the rest of the
points in the first cluster

A glitch (Il)

* The last clustering algorithm works well for
arbitrary k, but assumes that the number of
points in each cluster, n,, is approximately
equal

e Otherwise, eigenvalues which are “zero” and
“non-zero” may mix in the data of real data

A simple example

e Anideal A with k=2 and n, and n, points in
each cluster
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A simple example

e Eigensystem of A

1 0
1 0

: rom
1 0
C1 = 0 Cy = 1
0 1

. r nz
0 1

corresponding eigenvalues = ( ny —1 ng —1 -1 ... -1 )




A simple example

nyg—1 0 0 0 0 0 0 0
0 ni—1 0 .. 0 0 0 0 0
0 0 ny—1 ... 0 0 0 0 0 —n
1
: : : 0 0 0 0 0 0
D 0 0 0 0 ni—1 0 0 0 0 0
0 0 0 0 0 np—1 0 0 0
0 0 0 0 0 0 ng—1 0 0
0 0 0 0 0 0 0 ng—1 ... 0 -~ n,
0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 na—1

A simple example

e Eigensystem of D

0
1 0
. . oo
1 0 J
C; = 0 Cy = 1
0 1
. a nz
0 1 -
(n1—1 n2—1 TL1—1 n1—1 77,2—1
‘ | |
!
nl—l n,

A simple example

e Eigensystem of L

1 0
1 0
: : oy
1 0
C = 0 Cy = 1
0 1
. oM
0 1
] 2
(0 0 ny n1 o ny )

A glitch (I1)
e For this example:

— There are 2 eigenvalues approximately =0
— There are n, - 1 eigenvalues approximately = n;
— There are n, - 1 eigenvalues approximately = n,

* If n, >> n, and with sufficiently noisy data:
— The first two types of eigenvalues can mix
— Also their eigenvectors will mix
— Poor clustering performance




Fixing the glitch (ll) Fixing the glitch (ll)

e There are (at least) two ways of fixing this e Consider the generalized eigenvalue equation:
glitch, where both normalize the Laplacian L
before computing the eigensystem:

Lu=ADu
— Normalized spectral clustering according to
Shi & Malik (2000)
— Normalized spectral clustering according to Since L and D share eigenvectors, any such
Ng et al (2002) eigenvector is also an eigenvector of this

generalized eigenvalue equation
— Eigenvalues are different!

A simple example A simple example
Using the previous example: * The eigenvalues of the remaining generalized
e The indicator vectors ¢, and c, are both eigenvectors relative (L, D) are then given by

eigenvectors of L, with eigenvalues 0
— They are also generalized eigenvectors of (L, D), ”k/ (”k -1)
with eigenvalue 0
e The remaining eigenvectors of L have
eigenvalues n, (n, — 1 copies) or
n, (n, — 1 copies)

* This provides a normalization of the
eigenvalues that makes the clustering less
sensitive to the cluster sizes




A clustering algorithm (1V)

Normalized spectral clustering (Shi-Malik)

Assume n points and k clusters

Compute n x n affinity matrix A, and its D
ComputeL=D-A

Compute generalized eigensystem of (L, D)
There should be k “zero” eigenvalues

Set U to hold the corresponding normalized
eigenvectors in its columns

Apply k-means clustering on the row space of U
to find the k clusters

An observation (V)

* We notice that the eigensystem of

Lu=ADu

is the same as for the standard eigenvalue
problem

DlLu=)\u

An observation (V)

We define a normalized Laplacian as
L, =D

Referred to as the normalized random walk
Laplacian [see von Luxburg for explanation]

In general: L is not symmetric!
— is symmetric in the ideal case!

A clustering algorithm (V)
Variant of Shi-Malik

Assume n points and k clusters

Compute n x n affinity matrix A, and its D
ComputeL=D-A

Compute L., =DIL

Compute eigensystem of L,

There should be k “zero” eigenvalues

Set U to hold the corresponding normalized
eigenvectors in its columns

Apply k-means clustering on the row space of U
to find the k clusters




An observation (VI)

* Alternatively, we define a normalized
Laplacian as

Ly, =DY2L D12

» Referred to as the normalized symmetric
Laplacian

An observation (VI)

Is symmetric and has the same eigenvalues as
L., in the ideal case: {0, n, / (n, — 1)}

In general, if v is an eigenvector of L
1 2 . .
D/?v is an eigenvector of L,

then

rw’

The cluster indicator vectors are eigenvectors

also of Ly, with eigenvalues = 0

We can consider the eigensystem of L
instead!

A glitch (1I11)

A simple example with three ideal clusters
ny, n,, ny points each

e The indicator vectors c,, ¢,, ¢; are eigenvectors
of L, with eigenvalue 0

* Normalized to unit norm they become

1//m1 0 0
: : : T ny
1/y/nn 0 0 =
0 1/ 0
¢ = ¢y = : &3 = : rn
0 1/ymz 0 J
0 1/yns L

: { ny
0 0 1/v/ns

A glitch (Il1)

In the practical case, these is some noise and the
three eigenvectors if L, corresponding to
eigenvalue “zero” are linear combinations of the
previous vectors

— Normalized linear combinations!

— Correspond to rotations of the previous vectors

— Therefore we do k-means clustering on the row space
of U to find the clusters

— If ny, n,, n; are of different magnitudes:
* Clusters with many points are found close to the origin




Fixing the glitch (lll)

* We normalize the rows of U before the final
k-means clustering

* The resulting rows lie on a unit hyper-sphere

e This leads to a better separation of the
clusters in the row space of U

* We return to the issue of clustering points on
a sphere in the following lecture

A clustering algorithm (VI)
Ng et al (2002)

* Assume n points and k clusters

e Compute n x n affinity matrix A, and its D
e ComputeL=D-A

 Compute Ly, =D/2L D2

e Compute eigensystem of Loym

* There should be k “zero” eigenvalues

* Set U to hold the corresponding normalized
eigenvectors in its columns

¢ Set T = U but with each row normalized to unit norm

* Apply k-means clustering on the row space of T to find
the k clusters

Does it matter with algorithm we use?

e The unnormalized algorithm is attractive since
it is simple, but
— Use it only when you know that the clusters have
the same order of points
* The other two are approximately of the same
order of additional computations

— Von Luxburg suggests using L,,, instead of L, as
the normalized Laplacian

— In practice L., . appears to work as well

sym

Does it matter with algorithm we use?

* For large set of data, the Shi-Malik approach has
the advantage of an implicit normalization by
solving a generalized eigenvalue problem:

Lu=)\Du

without having to modify any matrix, and may
therefore be faster than using normalized
Laplacians




Summary

* 3 basic algorithms for spectral clustering
— Unnormalized: Lu=\u
— Shi-Malik
* Generalized eigenvalue problem: Lu=ADu
* Standard eigenvalue problem: L, u=Au

—Ng,etal: L, u=Au
» Spectral properties of A, D, L
— Relations to the cluster indicator vectors

Next lecture

e Practical aspects, parameter tuning
* Extensions of spectral clustering algorithms
» Applications to real problems

— Mainly in computer vision




