
Prerequisites for studies
at advanced level in Image Science

at Linköping University

Klas Nordberg

Computer Vision Laboratory
Department of Electrical Engineering

Linköping University

Version: 0.32– August 26, 2016

2

Contents

1 Sets and operations on sets 7
1.1 Sets . 7

1.1.1 Cartesian Product and Tuples . 8
1.1.2 Functions . 9
1.1.3 Collections . 10
1.1.4 Basic operations on sets . 10
1.1.5 Binary functions on a set . 11

1.2 Equivalence relations and equivalence classes . 12
1.3 Groups . 13

1.3.1 Semi-groups . 14

2 Linear algebra 15
2.1 Vector spaces . 15
2.2 Rn as a vector space . 16

2.2.1 Linear independence and span . 16
2.2.2 Bases and coordinates . 17
2.2.3 Scalar product and norm . 17
2.2.4 Angles and orthogonality . 18
2.2.5 Linear transformations . 18

2.3 Matrices . 20
2.3.1 Matrices and linear transformations . 20
2.3.2 Usual matrix forms . 21
2.3.3 Matrix transpose . 21
2.3.4 Matrix rank . 23
2.3.5 Outer product of vectors . 23
2.3.6 Submatrices . 23

2.4 Square matrices . 24
2.4.1 Trace . 24
2.4.2 Determinant . 24
2.4.3 Matrix inverse . 26
2.4.4 Common types of square matrices . 26
2.4.5 Basis matrix . 28
2.4.6 Eigenvalue decomposition (EVD) . 28
2.4.7 The spectral theorem for symmetric matrices . 30
2.4.8 Quadratic forms . 31
2.4.9 Projection operators . 31
2.4.10 Commuting matrices . 32

2.5 More on general matrices . 32
2.5.1 Frobenius scalar product and norm . 32
2.5.2 Matrix bases . 33

2.6 Affine spaces . 33
2.6.1 As a subset of a vector space . 33
2.6.2 As a vector space . 34

3

2.7 Euclidean spaces En . 34
2.7.1 En as a vector space . 35
2.7.2 En and Rn . 36
2.7.3 Concluding remarks . 37

2.8 What happens in R3 stays in R3 . 37
2.8.1 Handedness . 37
2.8.2 Vector cross product in R3 . 38
2.8.3 The determinant of a 3×3 matrix . 39
2.8.4 The inverse of a 3×3 matrix . 39
2.8.5 Rotation matrices in R3, SO(3) . 40

2.9 Linear equations . 40
2.9.1 Inhomogeneous linear equations . 40
2.9.2 Homogeneous linear equations . 41

2.10 Least squares problems . 42
2.10.1 Concluding remarks . 43

2.11 Cn as a vector space . 43
2.11.1 Scalar product and norm . 43
2.11.2 Orthogonality . 44
2.11.3 Linear transformations and matrices . 44
2.11.4 Common types of complex matrices . 45
2.11.5 Eigenvalues, eigenvectors, and diagonalization . 46
2.11.6 Frobenius scalar product and norm . 47

3 Calculus 49
3.1 Functions on R . 49

3.1.1 Derivatives . 49
3.2 Functions on Rn . 50

3.2.1 Taylor expansion . 52
3.3 Optimizing functions on Rn . 53

3.3.1 Constrained optimization and Lagrange’s method . 54
3.3.2 Gradient and Hessian of linear and quadratic forms . 54
3.3.3 Optimization of a second order function . 55

Index 57

4

Preface

This compendium presents a number of basic concept and results that are used as a basis for more advanced topics
in Image Science. As such, they should be well-know to most readers, and they are collected here for easy reference
and to allow you to, once again, put them at the top your head. In some cases, these results are complemented
with additional material that may not be well-known, but at least is well-connected to the basic stuff. Since it is
assumed that you have seen most or all of this before, there are little or no proofs for the statements made here.
Readers interested in proofs are referred to basic textbooks on the subjects, mainly linear algebra and calculus.

Several people have been involved in the discussion, organization, and proof reading of the resulting compendium.
In particular, I would like to thank Michael Felsberg, Per-Erik Forssén, John Hedborg, Jan-Åke Larsson, and
Rudolf Mester for participating in this process.

5

6

Chapter 1

Sets and operations on sets

Sets are the simplest, and most general, type of of mathematical structure, and the concept appears frequently
throughout this and other presentations. This notwithstanding, the definitions of sets and some related concepts are
not always provided during undergraduate studies. In order to have a clear notion of sets, which can be used when
we want to talk about more advanced concepts, this chapter presents sets, operations on sets, and some related
issues. Unless you are particularly interesting in the topic, you may skip parts of this chapter and only return if
unfamiliar concepts appear later on.

1.1 Sets
A set consists of nothing but a rule that can be applied to virtually any object to determine if it belongs to the set or
not. This rule is called a membership function, and it returns a binary value, e.g., YES and NO: a YES if the object
belongs to the set, and a NO if it does not belong to the set. All objects that belong to the set are referred to as the
elements of the set, and we can also say that the set consists of its elements. If a is an element of S, we write this
as a ∈ S.

The definition of a set does not imply any ordering of its elements, i.e., there is no “first” or “last” element of
a set, or any type of enumeration of its elements. Furthermore, all we can say about an object is whether or not it
is an element of a specific set. There is no meaning to the statement that a set consists of two copies of the same
element, at least on the sense that this set is distinct from a set that has only one copy of the element. The concept
of collections, described in Section 1.1.3, define a group of elements that can be both ordered and include multiple
copies of the same element.

Subsets

A set A is a subset of the set B if every element in A is also an element of B. We denote this as A⊂ B. Trivially, this
means that any set is a subset of itself. In the case that there exists at least one element of B that is not an element
of A, we refer to A as a proper subset of B.

Some common sets

There are some sets that appear more frequently than others in this presentation, and have a specific notation.

• The set of natural numbers {0,1,2, . . .} is denoted N.

• The set of integers is denoted Z.

• The set of rational numbers is denoted Q.

• The set of real numbers is denoted R.

• The set of complex numbers is denoted C.

• The empty set, that has no elements, is denoted ∅.

7

Universe set

The fact that the membership function can be applied to “anything” is what makes sets a very general concept. In
most practical cases, however, the membership function is not applied to “anything”. Instead it is restricted to a
universe set, the set of objets that are relevant for the problem at hand. For example, if we want to talk about even
numbers, this discussion is typically made in the context of the integers as the universe. There is no need to include
also apples and pears, and to conclude that they are not even numbers. Instead, we define the set of even numbers
as a subset of the integers, more precisely those that are even. The membership function is in this case restricted
to only integers.

Equality of sets

A very basic operation on sets it to determine if two sets are equal. Since a set is completely determined by its
membership function, two sets are equal exactly when their memberships functions are equal, i.e., they always
give the same answer to the question of membership. A more practical consequence of this idea is to say that two
sets, A and B, are equal if any element of A is also an element of B and any element of B is also an element of A.
In this case we are allowed to write A = B. If we can find one single element that belongs to either of the two sets
but not to both, the two sets are distinct: A 6= B.

Notation

If a set S only consists of a few elements, e.g., a,b,c, we can list them within a pair of braces:

S = {a,b,c}. (1.1)

Since there is no ordering of the elements of a set, unless explicitly stated otherwise, the same set S can also be
written as

S = {c,a,b}, (1.2)

or as any other permutation of its elements. Many interesting sets have infinitely many elements, and then it is not
possible to list its elements, as in Equation (1.1). Instead, we can write

S = {x ∈U : the membership function of S}, (1.3)

explicitly specifying the universe set U and the membership function. For example, the set of all positive real
numbers can be written as

{x ∈ R : x > 0}. (1.4)

Since the universe set U often is implied by the context in which a set appears, it is common to not mention U ,
other than implicitly by providing the general appearance of the elements of the set, i.e., how they are constructed
from simpler sets, together with the membership function. Examples of this notation is provided below.

1.1.1 Cartesian Product and Tuples
The Cartesian product of two sets, A and B, consists of the set of all ordered pairs (a,b), where a ∈ A and b ∈ B.
The fact that (a,b) is an ordered pair means that it is a list rather than a set, it has a first element, here a, and a
second element, here b. Furthermore, this list always contains exactly two elements. The Cartesian product can
also be written as

A×B = {(a,b), a ∈ A, b ∈ B} (1.5)

Here, we omit the universe set in the construction of the Cartesian product since it is implied. An order pair is also
referred to as a 2-tuple.

The idea of ordered pairs and 2-tuples can straight-forwardly be generalized to n-tuples as ordered lists of n
elements: (a1,a2, . . . ,an). Each element ak in the n-tuple is itself an element from the set Ak. In this way, we define
the Cartesian product of the n sets A1, . . . ,An as

A1× . . .×An = {(a1, . . . ,an), a1 ∈ A1, . . . ,an ∈ An} (1.6)

8

Notice the distinction between a set and an n-tuple. The latter has always a fixed number of elements, n, while
a set can have arbitrary many elements, even zero or infinitely many. Furthermore, the elements of the n-tuple are
ordered and it is meaningful, for example, to talk about the first and second element of a 2-tuple, while an ordering
does not exist for a set in general. Finally, for an n-tuple we always expect the k-th element to lie in the set Ak,
while a general set does not have such specific requirement. Although it is possible to see an n-tuple as special
type of set, with additional structures in terms of the orderings imposed by the Cartesian product, it is often better
to see a tuple as a separate class of objects that are distinct from sets. For example, the operations defined on sets
in Section 1.1.4, cannot be applied to n-tuples in a straight-forward manner.

1.1.2 Functions
A function from the set X to the set Y is a subset f ⊂ A×B which satisfy the requirements: (1) for each x ∈ X there
exists some y ∈ Y such that (x,y) ∈ f , and (2) if (x,y1) ∈ f and (x,y2) ∈ f then y1 = y2. In a simpler language: for
each x ∈ X there can only be one single y ∈ Y such that (x,y) ∈ f . This means that we can see f as a mechanism
that assigns a unique y ∈ Y to each x ∈ X , something we write as f (x) = y. In this case, we say that y is the image
of x under the function f . For example, the membership function of a set is a function from the universe set U to
the binary set {Y ES,NO}.

We use f : X→Y to denote that f is a function from X to Y . The set X is referred to as the domain of f , and Y
is its co-domain. The smallest subset of Y that contains the images of all points in X is the image of X , sometimes
denoted f (X). In general, not every element in Y needs to be the image of some x ∈ X , i.e., it may be the case that
Y 6= f (X). An element x in the domain of f is often referred to as the argument or variable of f .

In terms of notation, we formally make a distinction between f , that denotes the function, and f (x) that denotes
the value of the function when applied to x. This distinction is sometimes important since f ⊂X×Y while f (x)∈Y .
This distinction, however, is sometimes impractical when we want to describe how f depends on its argument, for
example, when we want to talk about the two functions f (x) and f (y) where y is, itself, depends on x.

It is common to use mapping as a synonym for a function. The set of all functions which maps from X to Y is
denoted as maps(X → Y).

Onto

A function f : X→Y maps onto Y (or surjective) if Y = f (X). This means that every y ∈Y is the image of at least
one x ∈ X .

One-to-one

A function f : X → Y is one-to-one (or injective) if f (x1) = f (x2) implies that x1 = x2. This means that two
distinct x1,x2 ∈ X cannot be mapped to the same y ∈ Y . This means that every y ∈ Y is either not an image of any
x ∈ X or the image of a exactly one x ∈ X .

Invertible functions

A function f : X → Y is invertible (or bijective) if it maps one-to-one onto Y . This means that each y ∈ Y is the
image of exactly one x ∈ X , and implies that the inverse of f , often denoted f−1, is a well-defined function that
satisfies y = f (x)⇒ x = f−1(y), for all x ∈ X and y ∈ Y . If f is invertible, then f−1 has Y as its domain and X as
its codomain.

Multi-variable functions

Let X1 and X2 be two sets and consider a function f : X1×X2→Y . This function maps an ordered pair of elements
(x1,x2) ∈ X2×X2 to the co-domain Y . This implies that in order to determine the function value of f applied
to (x1,x2), denoted f (x1,x2), we need to know both x1 and x2. In a natural way this defines f as a two-variable
function.

This idea can be generalized to functions of an arbitrary, but fixed, number of variables. Given n sets A1, . . . ,An,
we define an n-variable function on these sets as a function from the Cartesian product A′ = A1× . . .×An to some
co-domain Y . This means that if f is an n-variable function, we can choose to see it a function from n variables,

9

each from its specific set Ak, or a one-variable function where the variable comes from A′. Both views are useful,
but perhaps in different contexts. For example, in order make the notation more compact, we may sometimes
choose to see f as a one-variable function from A′, and in order to define what we mean by the partial derivative
of f with respect to one of its variables, we can see the same function as multi-variable function.

1.1.3 Collections

In its simplest form a collection is finite sequence of n elements, each from some common set A. This type of
collection can be denoted as

C = {a1,a2, . . . ,an}, or C = {ai, i = 1, . . . ,n}. (1.7)

A collection is somewhat similar to the idea of a tuple, described in Section 1.1.1, the collection C above could be
described as an n-tuple:

C ∈ A× . . .×A︸ ︷︷ ︸
n

. (1.8)

A more general description of a collection is as a function from I to A. Since I has a natural order, there is an order
defined also for the elements of C. The set I is in this case referred to as the index set of the collection C, and the
elements of C are then indexed by the set I.

This type of finite collection can be generalized in a straight-forward manner to infinite collections, which
makes collections different from tuples. In this case, the collection is indexed either by the natural numbers, N,
or the integers, Z. Again, the ordering of the index set induces an ordering also of any collection based on these
index sets. We will sometimes use sequence as a synonym of collection.

Although sets and collections sometimes may have the same notation, in terms of brackets that enclose a list of
elements, it should be clear from the definition if a set or a collection is constructed or, otherwise from the context
in which they are used.

1.1.4 Basic operations on sets

With sets and functions established, we can now define a set of common operations on sets and relations between
sets.

Set difference

Given two sets, A and B, we define the difference between the two sets as: all elements of A that are not also
elements of B. The set difference is denoted as A\B and is formally defined as:

A\B = {a ∈ A,a 6∈ B} (1.9)

This means that A\B is always a subset of A.

Complement

Given a set S, we can sometimes be interested in the sets that contains everything except the elements of S. We
refer to this as the complement of S, denoted C[S]. This definition of the complement is a bit cumbersome since the
“everything but” really means “everything but”, including your grandmother if she is not already an element of S.
To make the the complement of a set more manageable, we can define it relative to a universe set U , consisting of
everything that are meaningful for the definition of S. In this case the complement C[S] becomes the set difference
between the universe set and S:

C[S] =U\S. (1.10)

10

Union

Given two sets, A and B, their union is the set that contains all elements in B or in B, including those that are in both
A and B, denoted A∪B. Although not necessary from a formal point of view, the definition of the union operation
on sets often implies that A and B are subsets of a common universe set U . We can then write

A∪B = {x ∈U,x ∈ A or x ∈ B} (1.11)

Notice that both A and B are subsets of A∪B.
Let C be a collection of sets, all having the same universe U , over some index set: C = {Ai, i = I}. We can then

form the union of all sets in the collection as⋃
i∈I

Ai = {a ∈U, a is an element of at least one Ai ∈C} (1.12)

Intuitively, we can think of the union of some collection of sets as the “smallest” set that includes all elements in
all the sets of the collection.

Cut

Given two sets, A and B, their cut is the set that contains all elements both of SA and of B, denoted A∩B. In a
similar way as for the union operation, we normally assume that both A and B are subsets of a common universe
set U . We can then write

A∩B = {x ∈U,x ∈ A andx ∈ B} (1.13)

Notice that A∩B is a subset of both A and of B.
Let C be a collection of sets, all having the same universe U , over some index set: C = {Ai, i = I}. We can then

form the cut of all sets in the collection as⋂
i∈I

Ai = {a ∈U, a is an element of every Ai ∈C} (1.14)

Intuitively, we can think of the cut of some collection of sets as the “largest” set of elements that belong to every
set of the collection.

We sometime use intersection as a synonym to cut, in particular when referring to sets of geometric objects,
such as points in 2D or 3D space.

Disjoint sets

Two sets, A and B, are disjoint if they have no elements in common, i.e., there is no element of one of the two sets
that is also an element of the other. Yet another way to formulate the same thing is: A and B are disjoint if their cut
is empty: A∩B = ∅. A collection of sets is a collection of disjoint sets if every pair of sets in the collection are
disjoint.

1.1.5 Binary functions on a set
A binary function on a set S is a function S×S :→ S, i.e., it takes an ordered pair of elements from S and map it
to an element in S.

There are many common examples of binary operations. For example, addition, subtraction, and multiplication
are binary operations on R. In principe, also division is a binary operation on R, although we must exclude O as
denominator. Another example of a binary operation is multiplication of square matrices.

A binary operation is sometimes characterized by the way it maps the two elements in S.

Commutative operation

A binary operation f is a commutative operation if f (s1,s2) = f (s2,s1) for all s1,s2 ∈ S. Adding real numbers is a
commutative binary operation, while subtracting real numbers is not.

11

Associative operations

A binary operation f is an associative operation if

f (s1, f(s2,s3)) = f (f (s1,s2),s3) for all s1,s2,s3 ∈ S (1.15)

Adding real numbers is an associative binary operation, while taking the vector cross product in R3 is not.

Identity element

A binary operation f has an identity element e ∈ S if f (s,e) = f (e,s) = s for all s ∈ S. 0 is an identity element
when f is addition of real numbers, and 1 is an identity element when f is multiplication of real numbers. If f is
the vector cross product in R3, then there is no identity element of f .

Inverse

An element s ∈ S has aninverse s−1 relative to a binary operation f if f (s,s−1) = f (s−1,s) = e for each s ∈ S,
where e is the neutral element.

Distributive operations

Let f1 and f2 be two binary operations on S. If

f1(s1, f2(s1,s2)) = f2(f1(s1,s2), f1(s1,s3)) for all s1,s2,s3 ∈ S (1.16)

then f1 is a distributive operation over f2. Multiplication is a distributive operation over addition for real numbers.

1.2 Equivalence relations and equivalence classes
Given a set S, we consider a relation R on S, in terms of ordered pairs (s1,s2) where s1,s2 ∈ S. In the following, we
use sim to denote the relation R, i.e., we write s1 ∼ s2 as a shorthand for (s1,s2) ∈ R. In general, there exist many
different relations on any specific S but, here, we are particularly interested in relations that satisfy the following
properties:

1. For any s ∈ S: s∼ s (reflexivity).

2. If s1 ∼ s2 then s2 ∼ s1 for any s1,s2 ∈ S (symmetry).

3. If s1 ∼ s2 and s2 ∼ s3 then s1 ∼ s3 for any s1,s2,s3 ∈ S (transitivity).

These three properties restrict ∼ to what is known as an equivalence relation.
Given an equivalence relation ∼, we may pick an arbitrary s ∈ S and form the subset E(s)⊂ S as

E(s) = {s′ : s′ ∼ s}. (1.17)

This means that E(s) is the subset of S that contains all s′ ∈ S that are equivalent to s. Now, consider s,s′ ∈ S, and
the corresponding subsets E(s) and E(s′). Because the two subsets are constructed from an equivalence relation in
Equation (1.17), it follows that: {

E(s) = E(s′), s∼ s′,
E(s)∩E(s′) =∅, otherwise.

(1.18)

The subsets constructed in this way are referred to as equivalence classes, and Equation (1.18) implies that two
equivalence classes are either equal or disjoint. Another way to formulate the same thing is: each s ∈ S belongs to
exactly one equivalence class generated by ∼. Since there is exactly one equivalence class for each s ∈ S, it must
be the case that the union of all equivalence classes constitutes S.

If E is an equivalence class of S generated by ∼, and s ∈ E, then s is referred to as a representative of E.
In general, each equivalence class has many representatives, but it must be the case that if both s and s′ are
representatives of the same E, then s∼ s′.

We can summarize the properties of equivalence relations and equivalence classes as: the equivalence relation
∼ partitions S into disjoint equivalence classes that together fill out S. Furthermore, each s ∈ S is a representative
of exactly one of these equivalence classes.

12

1.3 Groups
A group is one of the simplest and also most common algebraic structure, although the fact that some well-known
sets and operations on these sets form groups is perhaps not always made explicit. Formally, a group consists
of a set of group elements, G, and a group operation on G, here denoted ◦. Together they satisfy the following
properties, sometimes known as the group axioms:

1. The group operation is a binary operation on G that is closed, i.e., ◦ : G×G→ G.

2. The group operation is associative: g1 ◦ (g2 ◦g3) = (g1 ◦g2)◦g3, for all g1,g2,g3 ∈ G.

3. There exists a neutral element, or identity element in e ∈ G such that e◦g = g◦ e = g for all g ∈ G.

4. Each g ∈ G has an inverse, here denoted g−1 ∈ G, such that g◦g−1 = g−1 ◦g = e.

An important observation is that the group axioms alone lead to two additional properties of a group:

5. The neutral element e is unique.

6. For each g ∈ G, its inverse g−1 is unique.

The definition of a group implies that it consists of two parts: the set of group elements G and the group
operation ◦, and this case we say that G forms a group under the operation ◦. This notwithstanding we often use
only G to denote the group and rely on the context to define which group operation that is relevant for this set.

There is a extensive theory related to groups, obtained by successively introducing additional properties to the
basic ones presented here. In this presentation, however, we will only have reasons to introduce two additional
properties related to a group. First, an Abelian group is a group where the group operation is commutative, i.e.,
g1 ◦ g2 = g2 ◦ g1 for all g1,g2 ∈ G. A group that is not Abelian is referred to as a non-Abelian group. As you
will see shortly, there are plenty of examples of both Abelian and non-Abelian group. Second, when G is a group,
a subset G′ ⊂ G is a subgroup of G if G′ itself forms a group with the same group operation, the same neutral
element, and the same inverses as G.

Examples

The following is a short list of examples of groups that frequently appear in practical examples and theoretical
analysis.

• The set of real numbers R and the addition operation form a group. The neutral element is 0, and the inverse
of x∈R is−x. The set of complex numbers C also forms a group under the addition operation. Alternatively,
we can restrict R to the set of rational numbers Q, or to the set of integers Z, that both form groups under
the addition operation. The set of even integers form a group with the addition operation. All these groups
are Abelian.

• We can extend this idea to the vector space Rn that forms a group with the operation of vector addition. The
neutral element is the zero vector 0, and the inverse of vector v ∈ Rn is −v. This is an Abelian group.

• The set of real numbers excluding zero, here denoted R−0, and the multiplication operation form a group.
The neutral element is 1, and the inverse of x ∈ R−0 is 1/x. The extension to C−0 and the restriction to Q−0
also form groups with the multiplication operation. This is not the case for Z since the inverses, in general,
then lie in Q. However, the set {−1,1} and multiplication form a group. All these groups are Abelian.

• Linear non-singular transformations onto Rn, as defined by n×n matrices of non-zero determinant, form a
group together with the matrix product. This group is the general linear group on Rn, denoted GL(n). The
neutral element is the identity matrix I and the inverse of matrix M ∈GL(n) is its matrix inverse M−1. Since
the matrix product in general is not commutative, this group is non-Abelian.

• There are several subgroups of GL(n) that appear in the literature, and here we will only mention a few
examples. The special linear group is the subgroup of GL(n) consisting of matrices with determinant = 1.
This group is denoted SL(n). Again, this is a non-Abelian group.

13

• Another common subgroup of GL(n) is the orthogonal group, i.e., matrices R ∈ GL(n) such that R>R = I.
This group is denoted O(n). It follows that matrices in O(n) have determinant = ±1. A subgroup of the
orthogonal group is the special orthogonal group, consisting of orthogonal matrices with determinant = 1.
This group consists of rotations in Rn and is denoted SO(n) and is, in fact, a subgroup also of SL(n). Both
O(n) and SO(n) are non-Abelian groups, except when n = 2.

Not every set with an operation forms a group. For example, consider R3 and the vector cross product ×. The
cross product is clearly a binary operation on R3 that is closed. It fails to be associative, however, and there is no
neutral element or inverses for this operation. Similarly, if we extend the GL(n) to include all n×n matrices, then
inverses do not exist for all such matrices.

1.3.1 Semi-groups
By removing the requirements of having inverses, and a neutral element, but keeping the associative operation that
is closed in the set, we have a semi-group. Although this concept is by far not as useful as a proper group, there
are still has some applications where it appears.

Examples

Here are some common examples of semi-groups:

• The set of positive real numbers (with or without the number zero) is a semi-group together with the opera-
tion of addition.

• The set of positive functions form a semi-group under convolution.

• The set of n×n matrices form a semi-group under matrix multiplication.

The vector cross product in R3 is not a semi-group since the operation in not associative.

14

Chapter 2

Linear algebra

2.1 Vector spaces

The definition of a vector space implies that it consists of two sets, the set of vectors V , and the scalar field F ,
together with two operations: vector addition and scalar multiplication. A field is any set of “numbers”, or scalars,
for which there exist an addition and a multiplication operation that behave in the usual way. In this context,
“the usual way” refers to how these operations work for the real numbers, for example in terms of associativity
and distributivity. Hence, F = R defines a very common type of vector space, a real vector space. The most
prototypical real vector space is Rn presented in Section 2.2. It is also not uncommon to consider the case when
F = C, a complex vector space, such as Cn. More exotic possibilities for the scalar field includes quaternions.
We will not consider these types of vector spaces here, but they may appear in more advanced topics. In this
presentation, the scalars are always denoted by lower-case italicized letters, e.g., a or x.

The set of vectors together with the operation of vector addition must form an Abelian group. This means that
there is a unique neutral element, the zero vector, denoted 0. In this presentation, vectors are always denoted by a
lower-case bold face letter, e.g., a or v, to distinguish them from scalars.

The operation of scalar multiplication, finally, maps a scalar and a vector to a vector. In the same way as vector
addition is a distinct operation from adding scalars, scalar multiplication is a distinct operation from multiplication
on the scalars field. In the case of a real or a complex vector space, however, we can in practice treat these
distinct operations interchangeably when they are combined, in the sense that they must have the same properties
as addition and multiplication have in a field, for example in terms of associativity and distributivity.

The above definition of a vector space is very general, and allows us to construct vector spaces that are not very
useful other than as curiosities. To make practical use of a vector space, we need to introduce additional structures
and properties. Instead of presenting these concepts in a general setting, they are introduced in Section 2.2 in the
context of Rn, the set of ordered n-tuples of real numbers, acting as a model vector space for which the additional
concepts can described in a very concrete way. Rn is the principal vector space of this presentation, but we will
also consider geometrical vector spaces in Section 2.7.1. Extensions to complex vector spaces appear in more
advanced topics.

Subspace

A subspace S of a vector space V is any set of vectors in V that, by itself, form a vector space over the same scalar
field and using the same vector addition and scalar multiplication as V does. We denote this as S⊂V and refer to V
as an embedding space of S. This implies that the vector sum of any two vectors in S, as well as the multiplication
of any scalar onto any vector in S is, again, a vector in S. This definition means that V is a subspace of itself, and
also that 0 is an element of all its subspaces. The trivial subspace of V consists of only 0, it is the smallest subspace
of V . When there exists a vector in V not found in S⊂V , we refer to S as a proper subspace of V .

15

2.2 Rn as a vector space

Rn is the real vector space of ordered n-tuples of real numbers. As a graphical representation of an element in Rn

we will often use a column of n real numbers, although this choice is arbitrary. Two vectors a,b ∈ Rn are then
represented as

a =


a1
a2
...

an

 , b =


b1
b2
...

bn

 , where ak,bk ∈ R, k = 1, . . . ,n. (2.1)

Rn becomes a vector space by introducing an operation of vector addition that, for the case of a and b in Equa-
tion (2.1), is defined as

a+b =


a1 +b1
a2 +b2

...
an +bn

 . (2.2)

Furthermore, with c ∈ R we define the scalar multiplication between c and, for example, a as the element in Rn

given by

c a =


c a1
c a2

...
c an

 . (2.3)

Rn is the principal vector space of this presentation, and unless explicitly stated otherwise, a vector refers to an
element of the vector space Rn. Also, a scalar refers to a real number.

In the rest of this section we present concepts that apply specifically to the vector space Rn, but most of them
can be generalized more or less straight-forward to more general vector spaces. In particular the concept of a scalar
product, discussed in Section 2.2.3 can be given a more general definition.

2.2.1 Linear independence and span

Given a collection of m vectors a1, . . . ,am ∈ Rn and m scalars c1, . . . ,cm we define their linear combination as

c1a1 + . . .+ cmam =
n

∑
k=1

ckak. (2.4)

If these m vectors are chosen such that we can find scalars c1, . . . ,cm, all not zero, such that the corresponding
linear combination vanish

c1a1 + . . .+ cmam = 0, (2.5)

then these vectors are linearly dependent. Otherwise, they are linearly independent, i.e., Equation (2.5) is true
only for coefficients c1 = . . . = cm = 0. An equivalent definition is to say that a collection of vectors is linearly
independent if it is not possible to write any of its vectors as a linear combination of the other.

Given a subset S ⊂ Rn, and a collection C of m vectors a1, . . . ,am ∈ Rn, C is said to span S if any s ∈ S can
be written as a linear combination of the vectors in C. More generally, the linear span of C, denoted span(C), is
defined as the set of all possible linear combinations formed between the vectors in C and all possible sets of m
scalars:

span(C) = {c1a1 + . . .+ cmam : c1, . . . ,cm ∈ R}. (2.6)

span(C) is a subspace of Rn, and an equivalent definition is to say that span(C) is the smallest subspace of Rn that
contains all vectors in C. When C spans a set S it follows that S⊂ span(C).

16

2.2.2 Bases and coordinates
A collection of n vectors e1, . . . ,en forms a basis of Rn if they span Rn and are linearly independent. A consequence
of this definition is that any vector a ∈ Rn can be written as a linear combination of the basis vectors:

a = c1e1 + . . .+ cnen, (2.7)

for some set of scalars c1, . . . ,cn. Furthermore, these scalars are unique and we refer to them as the coordinates of
a relative to the basis. The dimensionality of a vector space V , denoted dim(V), is the number of vectors in a basis
of the space. Any basis of Rn consists of n basis vectors, and so Rn is an n-dimensional vector space.

An important observation we can make from the previous definition is that there are infinitely many choices of
a basis for Rn. As a vector space, Rn has no particular basis that is a better basis than any other. A vector v has a
specific set of coordinates relative to a specific choice of basis, and they will changes if we instead choose another
basis. Given the underlying structure of Rn in terms of n-tuples of real numbers, however, we can see that there is
a canonical basis:

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . en =


0
0
...
1

 , (2.8)

that has the unique property of producing coordinates of the vector a in Equation (2.1), that are equal to the
elements of a:

a = a1e1 +a2e2 + . . .+anen. (2.9)

This property means that the canonical basis of Rn in some cases is useful for the analysis of some problem, or
for computing certain result. However, unless explicitly stated otherwise, a basis for Rn can be any collection of
linearly independent vectors that also spans Rn.

Subspace basis

Let S be a subspace of Rn, and let B be a collection of vectors that forms a basis of S, i.e., they are linearly
independent and span S. In this context, when S is a subspace of Rn, we refer to B as a subspace basis to indicate
that it is not necessarily a basis of the embedding space Rn.

2.2.3 Scalar product and norm
Rn has an additional operation of a scalar product, defined as

a ·b = a1b1 + . . .+anbn =
n

∑
k=1

akbk, (2.10)

for vectors a,b ∈Rn described by Equation (2.1). This product is also known as an inner product or a dot product.
Notice the distinction between the scalar multiplication operation, that combines a scalar and a vector to form
a vector, and the scalar product operation, that combines two vectors to form a scalar. The scalar product is
symmetric:

a ·b = b ·a, (2.11)

and also bi-linear:

(α1a1 +α2a2) · (β1b1 +β2b2) = α1β1 (a1 ·b1)+α1β2 (a1 ·b2)+α2β1 (a2 ·b1)+α2β2 (a2 ·b2). (2.12)

The scalar product defines a norm that allows us to make an algebraic formulation of what we mean with the
length of a vector a ∈ Rn. The norm is defined as

‖a‖= (a ·a)
1
2 =

√
a2

1 + . . .+a2
n. (2.13)

and satisfies the triangle inequality:
‖a+b‖ ≤ ‖a‖+‖b‖. (2.14)

17

In the following presentation, there will be several notions of normalization and normalized vectors but when
used without any other specifiers, a vector a is referred to as normalized when ‖a‖= 1. Often, normalized vectors
are denoted by a “hat” above the vector, as in â. The set of normalized vectors in Rn form the unit sphere in that
vector space. The unit sphere in Rn is denoted Sn−1. All vectors x for which ‖x‖ ≤ 1 form the unit ball in R3.
Hence, the difference between a sphere and a ball is that the sphere contains only the points on the “surface” of the
sphere, while the ball also contains its interior points.

Both the scalar product and the norm in Rn can be given a more general definition than what is presented here.
In particular, the norm can be given alternative definitions. The norm described in Equation (2.13) is referred to as
the l2-norm or simply 2-norm of Rn, and to distinguish this norm from other norms, we can denote the 2-norm of
a ∈ Rn as ‖a‖2. Alternative norms that appear frequently are

‖a‖1 = |a1|+ . . .+ |an| : the 1-norm (2.15)

‖a‖p =
(
|a1|p + . . .+ |an|p

)1/p : the p-norm (2.16)
‖a‖∞ = max(|a1|, . . . , |an|) : the max-norm (2.17)

In the following presentation, the norm ‖a‖ without any specifier always refer to the 2-norm.

2.2.4 Angles and orthogonality
From the previous definitions follow that

−1≤ a ·b
‖a‖ · ‖b‖

≤ 1, (2.18)

for two non-zero vectors a,b ∈ Rn. We can describe angles in Rn that are consistent with the usual concept of
angles in Euclidean spaces by defining cosine of an angle α between the two vectors as

cosα =
a ·b

‖a‖ · ‖b‖
and 0≤ α ≤ 180◦. (2.19)

Two vectors a,b∈Rn are orthogonal when their scalar product vanishes: a ·b = 0, i.e., the angle between them
is 90◦. Two subspaces S1,S2 ⊂Rn are orthogonal if every vector in S1 is orthogonal to any vector in S2. We denote
orthogonal vectors a and b as a ⊥ b, and orthogonal subspaces S1 and S2 as S1 ⊥ S2. An orthogonal collection
of vectors C is a collection where any pair of distinct vectors in C are orthogonal. Consequently, an orthogonal
basis is a basis that also forms an orthogonal collection of vectors. Furthermore, if the basis vectors in addition are
normalized, the basis is orthonormal, or an ON-basis for short.

Orthonormal bases are special in the sense that only for these bases can we obtain the coordinates of a vector
by means of scalar products with the basis vectors. For an ON-basis {êk,k = 1, . . . ,n} of Rn, this means that any
vector a ∈ Rn can be expanded as

a = c1ê1 + . . .+ cnên where ck = êk ·a. (2.20)

Given a subspace S ⊂ Rn, its orthogonal complement, denoted S⊥, is the set of all vectors in Rn that are
orthogonal to S. It follows that also S⊥ is a subspace of Rn and S ⊥ S⊥. Furthermore, any v ∈ Rn can be uniquely
decomposed as v = v1 +v0, where v1 ∈ S and v0 ∈ S⊥. In this case, the norm of v is given as

‖v‖2 = ‖v1‖2 +‖v0‖2. (2.21)

Trivially, the orthogonal complement of S⊥ is S.

2.2.5 Linear transformations
A linear transformation or linear mapping from Rn to Rm is a function f : Rn→ Rm, such that

f (λ1u1 +λ2u2) = λ1 f (u1)+λ2 f (u2), (2.22)

for all u1,u2 ∈ Rn and scalars λ1,λ2.

18

The set of linear transformations Rn→ Rm forms a vector space, here denoted Rm×n. For f1, f2 ∈ Rm×n, their
vector sum is the mapping f1 + f2 ∈ Rm×n defined by

(f1 + f2)(u) = f1(u)+ f2(u), (2.23)

for any u ∈ Rn. Furthermore, the multiplication of c ∈ R by the linear transformation f ∈ Rm×n is the mapping
(c f) ∈ Rm×n defined by

(c f)(u) = c(f (u)). (2.24)

We define the range of the linear transformation f ∈ Rm×n, as the image of its domain:

Range(f) = { f (u), u ∈ Rn}. (2.25)

It follows that Range(f) is a subspace of Rm, and dim(Range(f))≤ n. Furthermore, we define the null space of f
as the set of vectors in Rn that vanish when f is applied to them:

Null(f) = {u ∈ Rn : f (u) = 0}. (2.26)

It follows that Null(f) is a subspace of Rn, and dim(Null(f))≤ n. A vector n∈Null(f) is called a null vector of f .
Range(f) and Null(f) are subspaces of Rm and Rn, respectively, which in general are distinct. The two subspaces
are, however, related by the rank-nullity theorem:

dim(Range(f))+dim(Null(f)) = n. (2.27)

Intuitively, this means that for a fixed n each dimension of Null(f) removes a dimension of Range(f), i.e., the
range is as large as possible when the null space is the trivial subspace, consisting only of the zero vector 0 ∈ Rn.
This relation between range and null space of a linear transformation f is relevant, e.g., when we want to determine
an inverse of f .

A particular linear mapping f ∈ Rm×n can be given an convenient representation in terms of a set of scalars
in accordance with the following procedure. Let e1, . . . ,en be the canonical basis in Rn. Applying f onto each of
these basis vectors give a set of n vectors in V :

f (e1) f (e2) . . . f (en). (2.28)

For a ∈ Rn, with elements as in Equation (2.1), it can be expanded as

a =
n

∑
j=1

a je j, (2.29)

in accordance with Equation (2.9). Applying f onto a produces a vector b = f (a):

b =


b1
b2
...

bm

= f (a) = f

(
n

∑
j=1

a je j

)
= /due to linearity: Equation (2.22)/=

n

∑
j=1

a j f (e j). (2.30)

Each of the n vectors in Equation (2.28) is an element of Rm. If we use fi j to denote the i-th element of f (e j) this
means that bi, the i-th element of b, can be written as

bi =
n

∑
j=1

fi ja j, i = 1, . . . ,m. (2.31)

The set of scalars that we have constructed in this way, fi j for i = 1, . . . ,m and j = 1, . . . ,n, is a complete represen-
tation of the linear mapping f , referring specifically to the canonical bases of Rn and Rm, respectively. As we will
see in the following section, however, this scalar set can be given a more practical interpretation as the elements of
a matrix.

19

2.3 Matrices
A set of scalars, fi j, for i = 1, . . . ,m and j = 1, . . . ,n, can conveniently be arranged as a two-dimensional array of
real numbers, a matrix. Graphically, a matrix is represented as a table of numbers, with m×n entries, for example
as

F =


f11 f12 . . . f1n
f21 f22 . . . f2n
...

...
. . .

...
fm1 fm2 . . . fmn

 . (2.32)

In this presentation, a matrix is always denoted by a upper-case bold letter, for example as F. With F as the matrix
defined by the last expression, we denote the element of F at row i and column j as [F]i j. Notice that the first index
of F refers to the row and the second index to the column.

Matrices can be multiplied and there are, in fact, different ways to introduce a multiplication operation on
matrices. In this presentation, we are interested in what is known as the matrix product. In terms of the matrix
product, an m1×n matrix A can be multiplied with an n×m2 matrix B, to form an m1×m2 matrix, denoted A B.
The elements of this matrix are given by

[A B]i j =
n

∑
k=1

[A]ik[B]k j. (2.33)

We notice that this expression implies that [A B]i j equals the scalar product of the i-th row of A with the j-th
column of B. The matrix product introduces a very useful operation on matrices, even if it is only defined for
specific sizes of matrices, since it is not possible to multiply matrices of arbitrary sizes using the matrix product.
The matrix product is associative: for matrices A, B, and C of suitable sizes it is the case that A (B C) = (A B)C.

2.3.1 Matrices and linear transformations
In Section 2.2.5 we defined linear transformations between Rn and Rm, and also introduced the canonical repre-
sentation of such a transformation f in terms of a set of scalars fi j. We will now make the formal connection
between these linear transformations and matrices. By representing a vector v ∈ Rn as an n×1 matrix, a column
vector, in accordance with the graphical representation already established, it follows that a linear transformation
f onto v is given as the matrix product F v, where F is the matrix defined in Equation (2.32). Consequently, any
linear transformation in Rm×n can be represented as an m×n matrix, with elements given by the canonical scalars
described in Section 2.2.5. Also, and vice versa, any m×n matrix represents a linear transformation in Rm×n. Due
to this correspondence, we can identify the set of linear transformations in Rm×n with the set of m× n matrices.
This means that when in the following we refer to a specific m×n matrix, we also refer to a specific linear transfor-
mation from Rn to Rm. Furthermore, we can use Rm×n to denote also the set of m×n matrices. Once we have made
this identification, it make sense to also identify vectors in Rn as n×1 matrices. This is not a strict identification,
in the sense that we will sometime use a 1×n matrix, a row vector, to describe a vector in Rn, especially in inline
text.

The correspondence between linear transformations Rn→Rm and m×n matrices implies that we can define the
range and null space of an m×n matrix F such that they correspond to the range and null space of the corresponding
linear transformation in Rm×n. For example, with a matrix F that corresponds for a linear transformation f :
Range(F) = Range(f) and Null(F) = Null(f). The range of F can equivalently be thought of as the subspace of
Rm spanned by the columns of F. Consequently, the range of F) is sometimes also referred to as the column space
of F. Similarly, the row space of F is the subspace of Rn spanned by the rows of F. In accordance with the previous
discussion, the row space of F equals the orthogonal complement of the null space of F.

Vectorization of matrices

Section 2.2.5 established the fact that the set of linear transformations in Rm×n forms a vector spaces. Since we
now have identified Rm×n with the set of m×n matrices, this means that these matrices form a vector space. More
trivially, the vector space character of m× n matrices follows directly if we reshape such a matrix into an mn
element column vector in Rmn. For example, this can be done by stacking each column of the matrix on top of the

20

next following column, from left to right. The exact implementation of the rearrangement is not important, as long
as we stick to one and the same procedure each time. Once determined, such a rearrangement can also be inverted
and allows us to map a vector in Rmn back to a matrix in Rm×n. With this correspondence between matrices in
Rm×n and vectors in Rmn, we can use the ordinary algebraic structures defined for the latter vector space, described
in Section 2.2, also for matrices.

2.3.2 Usual matrix forms
Here, we use the term matrix form to mean a set of matrices that have in common that specific elements are set to
zero, while the other elements can have arbitrary values. The two most common matrix forms are described below.

Diagonal matrices

A special case of matrices are the diagonal matrices which have all elements set to zero, except along the diagonal
where the elements can have arbitrary values. For a diagonal m×n matrix D this means that

[D]i j =

{
di i = j
0 otherwise

, di ∈ R, i = 1, . . . ,min(m,n). (2.34)

This definition does not require D to be a square matrix, but rather than it has non-zero elements only in the
diagonal. Square diagonal n×n matrices form a Abelian semi-group under matrix multiplication: the product of
two such diagonal matrices is again a diagonal matrix, and they commute under matrix multiplication.

A common operation involving a diagonal matrix D is to multiply D from left or from right onto another matrix.
The result of this operation ca be summarized as follows:

• D M is equal to M, except that each each row of M is multiplied by the corresponding diagonal element in
D.

• M D is equal to M, except that each each column of M is multiplied by the corresponding diagonal element
in D.

Triangular forms

A matrix U is an upper triangular matrix or right triangular matrix when it has all elements below the diagonal
set to zero. In this case

[U]i j = 0, i > j. (2.35)

Similarly, a matrix L is a lower triangular matrix or a left triangular matrix when it has all elements above the
diagonal set to zero. In this case

[L]i j = 0, i < j. (2.36)

Multiplying an upper triangular matrix with another upper triangular matrix of suitable size to make the matrix
product well-defined, results again in an upper triangular matrix. This means that square n× n upper (or lower)
triangular matrices is a semi-group.

2.3.3 Matrix transpose
Let F be an m× n matrix with elements given in accordance with Equation (2.32). The transpose of F, denoted
F>, is then defined as the n×m matrix

F> =


f11 f21 . . . fm1
f12 f22 . . . fm2
...

...
. . .

...
f1n f2n . . . fmn

 . (2.37)

Intuitively, F> is obtained by “flipping” F along its diagonal.

21

As an immediate application of the transpose operation, we notice that two vectors a,b ∈Rn, both represented
as column vectors, have a scalar product a ·b that can be computed as a matrix product:

a ·b = a>b = b>a = b ·a. (2.38)

In this context, it makes sense to also identify scalars with 1× 1 matrices but it has to be done with some care.
If, for example, we want to implement the multiplication of the scalar c onto a vector u ∈ Rn in terms of a matrix
product, it has to be done as v c, where v represents an n× 1 matrix and c is a 1× 1 matrix. In this context, the
expression c v is not compatible with the matrix product.

From the definition of the transpose operation follows immediately that if we take the transpose of F>, we
return again to F:

(F>)> = F. (2.39)

It is also a simple exercise to verify that for two matrices A and B of suitable sizes the transpose of their matrix
product is given as

(A B)> = B>A>. (2.40)

Let M be an m×n matrix, i.e., its null space is a subspace of Rn. In accordance with Section 2.2.5, Range(M>),
too, is a subspace of Rn. Any vector u ∈ Range(M>) can be written as: u = M>v, with v ∈Rm. Let n ∈Null(M),
and consider the scalar product between n and u:

u ·n = u>n = v>M n = v>0 = 0. (2.41)

Consequently, any vector in Null(M) is orthogonal to any vector in Range(M>), and the two subspaces of Rn are
orthogonal. Hence, for any m×n matrix M:

Null(M)⊥ Range(M>). (2.42)

This observation comes handy in certain discussions.

Adjoint operator

Although the transpose operation is straight-forward to implement, it is a slightly more subtle issue to describe
what it means. Clearly F> is a linear transformation Rm→ Rn, i.e., it maps in the opposite direction relative to F.
In general, however, one is not the inverse of the other, so how are the two mappings F and F> related? Consider
two vectors u ∈ Rn and v ∈ Rm. Since the two vectors in general lie in distinct vector spaces they cannot be
combined in terms of the scalar product. We can apply F onto u, however, to obtain a vector in Rm and we can
then compute the scalar product of that vector with v. The result of this operation is

v · (F u) = v>F u. (2.43)

Alternatively, we can apply F> onto v and obtain a vector in Rn, and then compute the scalar product of that vector
with u. This time the result is

u · (F>v) = u>F>v = /Using Equation (2.40)/= (F u)>v = (F u) ·v. (2.44)

Consequently, the scalar product in Equation (2.43) is the same as the one in Equation (2.44). In summary: we can
map a vector u with a linear transformation F and then compute the scalar product of the result with some vector
v in the image space, and this is the same as if we instead map v with F> and then compute the scalar product of
the result with u. Two transformations related in this way are called adjoint operators, and the transpose operation
constructs F> as the adjoint operator of F.

The operation of scalar product can be defined in a more general way than is illustrated in Section 2.2.3 for Rn.
Therefore, the concept of an adjoint operator is more general than the transpose operation for matrices discussed
here.

22

2.3.4 Matrix rank

The number of linearly independent row and columns are equal for a general m×n matrix M, and this number is
referred to as the rank of M, denoted rank(M). Consequently, it must be the case that rank(M)≤min(m,n). In the
case that rank(M) = min(m,n) we say that M has full rank and otherwise it is rank deficient. If M has full rank and
m≥ n we say that M has full column rank, i.e., all columns are linearly independent. In this case, it is possible to
find set of n rows that are linearly independent. If M has full rank and m≤ n, M it said to have full row rank, i.e.,
all rows are linearly independent. In this case, it is possible to find set of m columns that are linearly independent.

Let A and B be two matrices of sizes such that their product A B is defined. Then

rank(A B)≤min(rank(A), rank(B)), (2.45)

with equality if and only if both A and B have full rank. For a matrix F∈Rm×n, we have rank(F)= dim(Range(F)).
The rank-nullity theorem Equation (2.27) can then be reformulated as

rank(F)+dim(Null(F)) = n. (2.46)

2.3.5 Outer product of vectors

The outer product of two vectors, a ∈ Rm and b ∈ Rn, is the m×n matrix given as

a b> (2.47)

Contrast to the inner product between two vectors, defined in Section 2.2.3, the result of the outer product is a
matrix, rather than a scalar, and in general a b> is not the same as b a>, i.e., the outer product is not commutative.
Also, for the outer product the two vectors need not be of the same dimensionality.

The outer product a b> is always of rank one, unless either of the two vectors is zero in which case the outer
product is zero and has rank zero.

2.3.6 Submatrices

In some cases we are interested in describing parts of a matrix rather than the entire matrix. In particular, we
may be interested in describing parts of matrix that, by themselves, form a 2-dimensional array of scalars. For a
particular matrix A we can extract such a submatrix in a variety of ways. A common example is the matrix Ai j that
is formed by removing row i and column j from A. This means that if A is m×n, then Ai j is a (m−1)× (n−1)
matrix, and i≤ m and j ≤ n. Another example is [A]i j, which we can see as a 1×1 matrix consisting of the entry
at row i and column j from A. Similarly the j-th column of A represents a vector in Rm and the i-th row is a vector
in Rn.

We can also use matrices and vectors, of suitable sizes, to construct larger matrices through concatenation. For
example, with A that is an m×n1 matrix and B that is an m×n2 matrix, we can form the m× (n1 +n2) matrix

C =
(
A B

)
. (2.48)

Here, the columns of A are concatenated with the columns of B, but for suitable sizes of the matrices, this concate-
nation can also be done over both rows and columns:

C =

(
A1 B1
A2 B2

)
. (2.49)

Here, we assume that submatrices on the same row have the same number of rows, and submatrices on the same
column have the same number of columns. This concatenation can also be done with vectors or combinations of
matrices and vectors. In some cases we use a horizontal or vertical bar to separate the different submatrices to
increase readability:

C =

(
A1 + I B1

A2 B2 + I

)
. (2.50)

23

2.4 Square matrices
Now that we have discussed the general case of m× n matrices, we focus instead on the special case of square
matrices, of size n×n, representing linear transformations onto Rn.

The identity matrix

The set of square matrices is not a group, since not every square matrix has an inverse, but in terms of the matrix
product it has a neutral element, the identity matrix or unit matrix, denoted I, a diagonal matrix that has all ones in
the diagonal. Formally, there is one distinct identity matrix for each n, but we will use I to denote all of them, and
rely on the context to determine which size it has. To make explicit that the identity matrix has a certain size, n×n,
the notation In×n is used. The identity matrix is the unique neutral element of the matrix multiplication operation,
i.e., it is the case that Im×m M = M In×n = M for any m×n matrix M.

An alternative form of the identity matrix is the Kronecker delta function, defined as

δi j =

{
1 i = j,
0 i 6= j.

(2.51)

This function is well-defined for any domain, even an infinite domain, of integers i, j, although in most practical
cases it is specified by the practical problem in which the function appears. The identity matrix and the Kronecker
delta function are related as

[I]i j = δi j. (2.52)

2.4.1 Trace
The trace of an n×n matrix M is the sum of the diagonal elements:

trace(M) =
n

∑
k=1

[M]kk. (2.53)

The trace operation has a useful property in relation to the matrix product. For two matrices A and B such that AB
is a square matrix, it follows that B A, too, is a square matrix, and

trace(A B) = trace(B A). (2.54)

This last relation may sometimes be mistaken to imply that we can permute matrices in an arbitrary way inside the
trace operation, but this is incorrect for more than two matrices. If we take the trace of a general matrix product,
we are allowed to take the first matrix in the product and put it last, and then take the trace of this new matrix
product. What Equation (2.54) really mean is that the results of both these operations are equal, i.e., the trace of a
matrix product has a cyclic property with respect to matrix multiplication. For example:

trace(A B C) = trace(B C A) = trace(C A B), (2.55)

for matrices A,B,C of suitable sizes to make the expressions well-defined. In general, however, trace(A B C) 6=
trace(A C B) even in the case that both matrix products are well-defined.

2.4.2 Determinant
The determinant of a square matrix is a scalar that characterizes how the corresponding linear transformation
changes the volume of a parallelepiped in Rn. The formal definition of the determinant for an n× n matrix F, as
a function of the elements of the matrix, amounts to an expression that relatively quickly becomes unmanageable
for large n. For the simplest case, n = 1, the determinant is given as the single matrix element:

detF = [F]11. (2.56)

For arbitrary n > 1, we can use a recursive formula:

detF =
n

∑
k=1

(−1)k+1[F]1k detF1k, (2.57)

24

where F1k denotes the (n−1)× (n−1) matrix obtained from F by removing the first row and the k-th column. For
example, for n = 2 we get

detF = [F]11[F]22− [F]12[F]21, (2.58)

and for n = 3, the determinant is

detF = [F]11[F]22[F]33− [F]11[F]23[F]32− [F]12[F]21[F]33+

+[F]12[F]23[F]31 +[F]13[F]21[F]32− [F]13[F]22[F]31. (2.59)

See also Section 2.8.3 for alternative but equivalent formulations of the determinant for the case of 3×3 matrices.
Notice that Equation (2.59) implies that each row and each column in F contributes with exactly one factor

in each term of the determinant. It should be mentioned that the above expressions, and similar expressions
formulated directly in the elements of F, in practice may not be the most effective and numerically accurate
method to compute the determinant. For example, in Section 2.4.6 it is shown how to compute the determinant of
a diagonalizable matrix in terms of its eigenvalues, Equation (2.92).

Despite its somewhat complicated expression, the determinant is very useful since it describes how a linear
transformation f changes the volume of a parallelepiped P⊂ Rn:

volume of f (P) = det(F)volume of P (2.60)

Here, f (P) denotes the resulting parallelepiped after applying the linear transformation f on all points in Rn, and
F is the matrix representation of f . In particular this means that when the volume of P is > 0 but the volume of
f (P) = 0, then det(F) = 0. This, in turn, implies that F is singular since at least some non-zero vector in Rn is a
null vector of F. We summarize this as:

detF = 0 ⇔ F is singular. (2.61)

This means that we can use the determinant to determine whether or not a matrix is singular. In any practical
situation, the left part of this relation must be interpreted as det(F) is very close to zero, where “very close”
depends on the numerical resolution of the computations involved for computing the determinant. This is an
important observation and is an issue in many applications that are based on solving linear equations.

The determinant has several useful properties in relation to other matrix operations:

det(A B) = det(A) det(B), (2.62)

det(A>) = det(A), (2.63)
det(I) = 1, (2.64)

det(c A) = cn det(A), (2.65)

where A and B both are square n×n matrices, and c is a scalar.
Let F′ be F where one of its rows or columns has been multiplied by the scalar c. This leads to det(F′) =

c det(F). For example, changing the sign of a column or row in F has the effect of changing the sign of the
determinant.

Determinant of diagonal or triangular matrices

The square diagonal matrices exhibit an especially simple expression for their determinants. Given an n×n matrix
D as in Equation (2.34), its determinant is just the product of the diagonal elements:

detD = d1 ·d2 · . . . ·dn. (2.66)

The same result is true also for square triangular forms. If D is either an upper or lower square triangular
matrix, then its determinant is simply the product of its diagonal elements.

25

2.4.3 Matrix inverse
An n×n non-singular matrix M can be inverted, by forming its matrix inverse M−1, such that M−1M=MM−1 = I.
Similar to the case of the determinant, explicit expressions for the matrix inverse in terms of the elements of M
make little sense for large n. In the simplest case, for n= 1, the matrix inverse is given as the 1×1 matrix consisting
of the reciprocal of the single element in M:

M−1 =
(
1/[M]11

)
. (2.67)

For arbitrary n > 1, we can use a recursive formula:

[M−1]i j = (−1)i+ j detMi j/detM, (2.68)

where Mi j denotes the (n− 1)× (n− 1) matrix obtained from M by removing the i-th row and the j-th column.
For example, for n = 2 we get

M−1 =
1

detM

(
[M]22 −[M]12

−[M]21 [M]11

)
. (2.69)

See also Section 2.8.4 for alternative but equivalent formulations of the matrix inverse for the case of 3×3 matrices.
It should be mentioned that the above expression, and similar expressions formulated directly in the elements

of M, in practice may not be the most effective and numerically accurate method to determine the matrix inverse.
For example, in Section 2.4.6 it is shown how to compute the inverse of a diagonalizable matrix in terms of its
eigensystem, Equation (2.93).

In relation to other matrix operations, the matrix inverse has a number of useful properties:

(A>)−1 = (A−1)> = /more compact notation/= A−T , (2.70)

det(A−1) = 1/det(A), (2.71)

(A B)−1 = B−1A−1, (2.72)

(c A)−1 =
1
c

A−1, (2.73)

for square matrices A,B of equal size.
Square diagonal matrices are particularly simple to invert. With D an n×n diagonal and non-singular matrix,

as described in Equation (2.34), its inverse D−1 is diagonal with elements given as

[D−1]i j =

{
1/di i = j,
0 otherwise.

(2.74)

We remind again, that the matrix inverse defined here cannot be applied to matrices that are singular, and in
practice this implies also matrices that are “close to singular” since the result may then be perturbed by numerical
inaccuracies. It is, however, possible to define generalization of the matrix inverse both to non-square matrices and
to singular matrices.

Implicit matrix inverse

As a linear transformation, M−1 can be interpreted as an explicit matrix inverse but also as a “placeholder” for the
result of such an operation that can be combined with other matrices by means of the matrix product. For example,
we can interpret the vector c = A−1b as the result of first computing the matrix inverse of A and then multiply the
result onto b. In practice, however, it may be more efficient to see c as the result of solving the linear equation
A c = b with respect to c which, for example, can be done using Gaussian elimination or other more advanced
techniques for solving linear equations. This may be a more efficient way of implementing the computation of c
than the first approach that involves an explicit matrix inverse.

2.4.4 Common types of square matrices
There are quite a few classes of matrices, and in particular of square matrices that appear frequently for analyzing
problems and computing results. This section lists some common classes of square matrices that appear in this
presentation.

26

Symmetric and anti-symmetric matrices

A square matrix M is symmetric if M> = M. This implies that [M]i j = [M] ji for all elements in the matrix. Since
the sum of two symmetric matrices is symmetric, it follows that the set of symmetric n×n matrices is a subspace of
Rn×n. This subspace is here denoted Sym(n), and since there are n(n+1)/2 independent elements of a symmetric
matrix, dim(Sym(n)) = n(n+1)/2.

A linear transformation f : Rn→ Rn is symmetric if

u · f (v) = v · f (u), (2.75)

for all u,v ∈ Rn. A symmetric linear transformation f is represented by a symmetric matrix F, and in this case it
follows that

u>F v = v>F u, (2.76)

for all u,v ∈ Rn.
A square matrix M is anti-symmetric or skew-symmetric if M> = −M. Since the sum of two anti-symmetric

matrices is anti-symmetric, it follows that the set of anti-symmetric n× n matrices is a subspace of Rn×n. This
subspace is denoted so(n), and since there are n(n−1)/2 independent elements of an anti-symmetric matrix, it fol-
lows that dim(so(n)) = n(n−1)/2. If M ∈ so(n), then all elements in the diagonal of M vanish and, consequently,
trace(M) = 0.

A linear transformation f : Rn→ Rn is anti-symmetric if

u · f (v) =−v · f (u), (2.77)

for all u,v ∈ Rn. An anti-symmetric linear transformation f is represented by an anti-symmetric matrix F, and in
this case it follows that

u>F v =−v>F u, (2.78)

for all u,v ∈ Rn.
A general square matrix M can always be uniquely decomposed into a sum of a symmetric and an anti-

symmetric matrix:
M = S+A, (2.79)

where S = 1
2 (M+M>) is symmetric and A = 1

2 (M−M>) is anti-symmetric.

General linear transformations

The set of square and non-singular matrices, i.e., matrices which inverses exist, in combination with matrix multi-
plication form the group of general linear transformations, denoted GL(n).

The set of n× n matrices with determinant +1 is a group under matrix multiplication, denoted SL(n). It is a
subgroup of GL(n).

Orthogonal matrices

An orthogonal matrix M satisfies M>M = I. This implies that M> = M−1, and M M> = I, and also that detM =
±1. The set of n×n orthogonal matrices forms a group under matrix multiplication, he orthogonal group, denoted
O(n). O(n) is a subgroup of both GL(n) and consists of two separate components, one containing orthogonal
matrices with determinant = +1, and one component containing orthogonal matrices with determinant = −1.
They are separate in the sense that it is not possible to find a path in Rn×n from one component to the other without
leaving O(n). The columns of M ∈ O(n) form a ON-basis of Rn, this is the case also for the rows of M.

An orthogonal transformation f : Rn→Rn is an orthogonal transformation if ‖ f (v)‖= ‖v‖ for all v ∈Rn. An
orthogonal transformation is represented by an orthogonal matrix.

A useful property that follows immediately for M∈O(n), as a consequence of M>M= I, is that the magnitudes
of the elements of M are restricted: −1 ≤ [M]i j ≤ 1, for i, j = 1, . . . ,n. Furthermore, if Mi j = ±1, then all other
elements in row i and column j vanish.

27

Rotations, SO(n)

A matrix M ∈ O(n) is a rotation1 if det(M) = 1. The set of all rotation matrices in combination with matrix
multiplication form the special orthogonal group, a subgroup of O(n), denoted SO(n). The other half of O(n),
where the determinant is negative, consists of rotations combined with reflections and do not form a group. SO(n)
is a subgroup also of SL(n).

We have now introduced the subspace of n× n anti-symmetric matrices, denoted so(n), and the group of
rotations in Rn, denoted SO(n). The similarity in notation is not a coincidence, the two sets of matrices are indeed
related although the connection belongs to a more advanced topic.

2.4.5 Basis matrix

In Rn we can select a basis and form an n× n matrix that holds the basis vectors in its columns. More generally,
given an m-dimensional subspace S ⊂ Rn we can select a subspace basis for S, corresponding to an n×m matrix
E that holds the basis vectors in its columns. In both cases is E of full column rank, it has linearly independent
columns. Vice versa, if E its an n×m matrix of rank m≤ n, its columns form a basis for an m-dimensional subspace
of Rn. Consequently, in the following we will use the concept of a basis matrix to refer to an n×m matrix of full
rank, with the specific intention of using its columns as a basis.

Let E be a basis matrix that holds the basis vectors ek in its columns, and let c ∈ Rm hold m coefficients ck in
its elements. The linear combination of the coefficients and the basis vectors is then given as

v = c1e1 + . . .+ cmem = E c. (2.80)

Since we are discussing a basis, it follows that the elements of c are the coordinates of v. Furthermore, in the case
that E holds a basis for the entire of Rn, it is n× n, non-singular, and can be inverted. The coordinates of v are
given as

c = E−1v. (2.81)

In the case of an ON-basis of Rn, then E ∈ O(n), i.e., E−1 = E>, and we get

c = E>v. (2.82)

Each element of c, i.e., each coordinate of v, is defined here as the scalar product between a row of E>, i.e., a
column of E, i.e., a basis vector, and the vector v. This is consistent with Equation (2.20).

2.4.6 Eigenvalue decomposition (EVD)

A square matrix M has an eigenvalue λ with a corresponding eigenvector e if

M e = λ e. (2.83)

Trivially this relation is satisfied for e = 0, so the zero vector is excluded from the discussion about eigenvectors.
We notice that if λ is an eigenvalue of M with a corresponding eigenvector e, then c e is also an eigenvector with
eigenvalue λ for any c ∈ R−0. Furthermore, if e1 and e2 are linearly independent eigenvectors with the same
eigenvalue λ , then any linear combination of e1 and e2 is also an eigenvector with eigenvalue λ . Consequently, for
each distinct eigenvalue λ there is a subspace of Rn, an eigenspace, containing the eigenvectors corresponding to
λ . The set of all eigenvalues together with their eigenspaces are referred to as the eigensystem of M.

The eigenvalue and eigenvector equation Equation (2.83) can be rewritten as

(M−λ I) e = 0, (2.84)

which means that e is a null vector of M−λ I. Consequently, any eigenvalue λ must be a root of pM, defined as

pM(λ) = det(M−λ I). (2.85)

1In some textbooks the concept of rotations applies to O(n). Here, we use rotation to refer only to SO(n).

28

The n-th order polynomial pM is the characteristic polynomial of M, and if we want to determine the eigensystem
of M, one way to start is to first determine its characteristic polynomial pM, then determine the roots of pM, and
for each root determine the corresponding eigenspace.

The characteristic polynomial pM has up to n distinct roots, and even if the coefficients of pM are real, the roots
can in general be complex, but in that case they come in complex conjugated pairs. In the case of a complex root,
i.e., a complex eigenvalue, it cannot be the case that the corresponding eigenvector lies in Rn, it must instead be an
element of Cn. We will not investigate the implications of this observation here, but return to it in more advanced
topics. As a root of pM, each distinct eigenvalue λi of M has an algebraic multiplicity ri such that we can write

pM(λ) = A (λ −λ1)
r1 . . .(λ −λm)

rm . (2.86)

Here, A is the coefficient of the n-th order term of pM, m is the number of distinct roots of pM, with m ≤ n.
With Ek denoting the eigenspace corresponding to eigenvalue λk, dim(Ek) is the geometric multiplicity of λk. The
geometric multiplicity of an eigenvalue is related to its algebraic multiplicity, rk, as 1 ≤ dim(Ek) ≤ rk. While the
algebraic multiplicities rk always add to n, it may be the case that some eigenspaces do not have a dimensionality
equal to rk, and then their dimensions do not add to n, in which case M is said to be defective.

Although the concepts of algebraic and geometric multiplicities are important for eigenvalues, it is sometimes
unpractical to characterize eigenvalues as being distinct and with some multiplicity. In the following presentation,
we simply state that the n-th order characteristic polynomial pM has exactly n roots, that may be distinct or not.
Consequently, M has n eigenvalues that may be distinct or not, labeled λ1 to λn. Normally we sort this sequence
in descending order with respect to their values if they are real, or magnitudes if they are complex.

If M is not defective it is instead diagonalizable and this case has several interesting implications. First, if
and only if M is diagonalizable is it possible to determine a basis for Rn that consists only of eigenvectors of M.
Second, let E be the corresponding basis matrix. It is then the case that

M E = E D, (2.87)

where D is a diagonal n×n matrix that holds the corresponding eigenvalues in the same order as the eigenvectors
in E. This leads to

M = E D E−1. (2.88)

The matrix inverse of E is well-defined since E has full rank. The expression in the right-hand side of Equa-
tion (2.88) is a eigenvalue decomposition of M, or EVD for short. It describes M as a product of three matrices,
one related to its eigenvalues (D) and two related to its eigenvectors (E).

From Equation (2.88) follows immediately that

E−1M E = D, (2.89)

which means that M can be transformed into the diagonal matrix, diagonalized, by the linear transformation E. In
fact, applying the n×n diagonalizable matrix M = E D E−1 onto v ∈ Rn gives

M v = E D E−1v (2.90)

In the light of Section 2.4.5, we recognize c = E−1v as the coordinates of v relative the eigenvector basis in E.
These coordinates are then transformed by the diagonal matrix D, which is a trivial mapping: each coordinate ck is
multiplied with a corresponding eigenvalue in D. Finally, the transformed coordinates are linearly combined with
the basis vectors by the matrix multiplication with E.

EVD and determinant

Let M be n×n and diagonalizable: M = E D E−1, where E holds a basis of eigenvectors in its columns, and D is
a diagonal matrix that holds the corresponding eigenvalues. Its determinant is given by

det(M) = det(E) det(D) det(E−1) = det(E) det(D)1/det(E) = det(D). (2.91)

We can then use Equation (2.66) to get

det(M) = λ1 · . . . ·λn =
n

∏
k=1

λk, (2.92)

where λk,k = 1, . . . ,n, are the n eigenvalues of M. As a consequence of this observation, we see that M is singular
exactly when it has at least one vanishing eigenvalue.

29

EVD and matrix inverse

For the case that M is non-singular, i.e., it is diagonalizable and all its eigenvalues are non-zero and, therefore, its
inverse is well-defined, we have

M−1 = E D−1E−1. (2.93)

This implies that M and M−1 have all their eigenvectors in common, and if λ is an eigenvalue for some eigenvector
e of M, then 1/λ is the eigenvalue of e relative M−1.

2.4.7 The spectral theorem for symmetric matrices

If we consider eigenvalue decomposition for the special case when M is n×n and symmetric, the following result,
known as the spectral theorem, can be derived:

1. It is possible to determine an orthonormal basis for Rn, consisting of eigenvectors of M.

2. All eigenvalues of M are real.

In terms of Equation (2.88), the first result implies that in we can choose E as an orthogonal matrix, i.e., E−1 = E>,
and reformulate the equation as

M = E D E>, (2.94)

where E ∈ O(n) holds an ON-basis of eigenvectors and D is real a diagonal matrix holding the corresponding
eigenvalues of M.

The formulation of the spectral theorem made here is not the only one possible. In more advanced topics it can
be extended to anti-symmetric matrices, so(n), and to rotation matrices, SO(n).

Eigenvalues of M>M

Let M be an arbitrary m×n matrix, and consider the symmetric n×n matrix M>M and its eigensystem. From the
eigenvalue relation Equation (2.83) we get

M>M e = λ e, ⇒ e>M>M e = λ e>e, ⇒ ‖M e‖2 = λ ‖e‖2, (2.95)

From this follows that
λ ≥ 0, (2.96)

i.e., all eigenvalues of M>M must be non-negative.

Eigensystem of the identity matrix

The n×n identity matrix I is a special case in terms of eigenvectors and eigenvalues: any non-zero vector e ∈ Rn

is an eigenvector with eigenvalue = 1 since I e = 1 · e. This observation leads to a couple of useful results.
First, let M be a square matrix with an eigenvector e and corresponding eigenvalue λ . Then, for any α ∈ R,

e is also an eigenvector of M+α I with eigenvalue λ +α . Consequently, adding α I to a square matrix does not
change its eigenvectors, it merely adds α to its eigenvalues.

Expansion of the identity matrix

It follows trivially that any vector e ∈ Rn is an eigenvector of the n× n identity matrix I, with corresponding
eigenvalue 1. Let E be the basis matrix of an ON-basis for Rn. It then follows that

I = E E> = ê1ê>1 + . . .+ ênê>n =
N

∑
k=1

êkê>k , (2.97)

where êk,k = 1, . . . ,n, are the basis vectors of the ON-basis.

30

2.4.8 Quadratic forms
A symmetric n×n matrix M defines a function f : Rn→ R in the following way

f (v) = v>M v, (2.98)

which is referred to as a quadratic form, or 2-form, on Rn. Since M is symmetric, it can be decomposed into the
form described in Equation (2.94), leading to

f (v) = v>E D E> v = (E>v)>D (E>v). (2.99)

This means that we can implement the mapping f as first applying the linear transformation E> and then computing
the quadratic form defined by D on that resulting vector. This, in turn, means that much of the character of the
quadratic form described by M is the same as the one described by D, where the latter holds the eigenvalues of M.

An important characterization of a quadratic form is its sign for general v 6= 0. There are five distinct cases:

1. f is positive definite if f (v)> 0 for v 6= 0. This is equivalent to: all eigenvalues of M are positive.

2. f is positive semi-definite if f (v)≥ 0 for v 6= 0. This is equivalent to: all eigenvalues of M are non-negative.

3. f is negative definite if f (v)< 0 for v 6= 0. This is equivalent to: all eigenvalues of M are negative.

4. f is negative semi-definite if f (v)≤ 0 for v 6= 0. This is equivalent to: all eigenvalues of M are non-positive.

5. f is indefinite if f (v) can be both positive and negative for v 6= 0. This is equivalent to: M has both positive
and negative eigenvalues.

Cases 1 and 3 are referred to as elliptic since the surface where f is constant forms an ellipsoid in Rn. Similarly,
cases 2 and 4 are referred to as parabolic since the surface forms a paraboloid. Case 5, finally, is referred to as
hyperbolic since the surface forms a hyperboloid.

2.4.9 Projection operators
Consider two orthogonal subspaces S1 and S2 of Rn: where S1⊥ S2, dim(S1)=m1, dim(S2)=m2, and m1+m2 = n.
This means that every u ∈ Rn can be decomposed in a unique way as u = u1 +u2, where u1 ∈ S1 and u2 ∈ S2. Let
E1 be an n×m1 basis matrix corresponding to an ON-basis of S1 and E2 an n×m2 basis matrix corresponding to
an ON-basis of S2, leading to

u1 = E1E>1 u, and u2 = E2E>2 u. (2.100)

This means that P1 = E1E>1 acts a projection operator onto S1. It takes an arbitrary vector u ∈ Rn and performs
an orthogonal projection of u onto S1. Similarly, P2 = E2E>2 is a projection operator onto S2. Notice that a
projection operator is a symmetric matrix. Furthermore, it is independent of the particular choice of ON-basis for
the corresponding subspace, it only depends on the subspace itself.

Form the n× n matrix E = (E1 E2) by concatenating the two basis matrices E1 and E2. E is then a basis
matrix of an ON-basis for Rn. It then follows that P1 = E D1E>, where D1 is a diagonal matrix where the first m1
elements are = 1 and the remaining m2 elements are = 0. Consequently, P1 has m1 eigenvalues that are = 1 and
m2 eigenvalues that vanish. Similarly, P2 has m2 eigenvalues = 1 and m1 eigenvalues that vanish.

If P is a projection operator onto some subspace S, then the projection operator onto S⊥, the orthogonal com-
plement of S, is given as

P⊥ = I−P. (2.101)

Based on these definitions of a projection operator, it follows that the projection operator corresponding to the
one-dimensional subspace spanned by a non-zero vector m is given as

P =
m mT

‖m‖2 , (2.102)

and the projection operator for the orthogonal complement is given as

P⊥ = I− m mT

‖m‖2 . (2.103)

31

2.4.10 Commuting matrices
Let A and B be two n× n matrices. A and B are said to commute if A B = B A. As linear transformations, this
means that it does not matter in which order A and B are applied to a vector in Rn.

We now assume that both A and B are diagonalizable and that they share a common n-dimensional basis of
eigenvectors. This means that we can write A = E D1E−1 and B = E D2E−1, where E holds the common basis of
eigenvectors. From this follows:

A B = E D1E−1E D2E−1 = E D1 D2E−1 = E D2 D1E−1 = E D2E−1E D1E−1 = B A (2.104)

which shows that sharing a basis of eigenvectors is sufficient for making A and B commute. It is, in fact, also a
necessary condition for making A and B commute.

2.5 More on general matrices
Given that several useful concepts and operations are presented, we return to the case of matrices of general size
to define additional features that are useful later on.

2.5.1 Frobenius scalar product and norm
In Section 2.3.1 it was concluded that the set of m× n matrices forms a real vector space which we can identify
with Rmn. This identification can intuitively be implemented by means of reshaping an m×n matrix to a column
vector in Rmn, and from there apply the usual machinery that is available for this vector space. For example, with
A and B as two m×n matrices, we can compute their scalar product as

A ·B =
m

∑
i=1

n

∑
j=1

[A]i j[B]i j. (2.105)

Notice that this expression corresponds directly to the usual scalar product that is defined for vectors in Rmn in
Section 2.2.3: as a sum of products between corresponding elements. This last expression can also be given more
compact representations in terms of operations on matrices:

A ·B = trace(A>B) = trace(B A>) = trace(B>A) = trace(A B>) = B ·A. (2.106)

The four different forms reflect that the scalar product on Rmn is symmetric: A ·B = B ·A. But they also reflect
that the trace operation, when applied to a matrix product, allows a matrix at the end of a the product to be moved
to the other end, see Section 2.4.1. These multiple and equivalent definitions are sometimes useful for simplifying
derivations that includes scalar products of matrices. In the general case of rectangular m× n matrices, notice
that the first two forms imply taking the trace of an m×m matrix, while the last two applies the trace onto an
n×n matrix, and in practice the smaller size is the preferred. The scalar product defined in Equation (2.105) and
Equation (2.106) is referred to as the Frobenius scalar product or Frobenius inner product.

Given the Frobenius scalar product, we can define also a norm for matrices:

‖A‖F = (A ·A)1/2 =
√

trace(A>A). (2.107)

There are other types of norms for matrices that appear in the literature, and this one is referred to as the Frobenius
norm.

A useful result in relation to the Frobenius norm is that it is invariant to orthogonal transformations:

‖A‖F = ‖Q1A Q2‖F . (2.108)

Here, Q1 ∈O(m) and Q2 ∈O(n). In the case that A is n×n and symmetric we can express A in terms of an eigen-
value decomposition: A = E D E>, where E ∈ O(n) and D is diagonal. This allows us to rewrite Equation (2.107)
as

‖A‖F =
√

trace(E D>E>E D E>) =
√

trace(D2) =
√

λ 2
1 + . . .+λ 2

n , (2.109)

where λk,k = 1, . . . ,n, are the eigenvalues of A. This result does not hold for a general A that is diagonalizable,
but E ∈ O(n) is a sufficient condition for Equation (2.109) to be valid.

32

Example

Let S∈ Sym(n), a symmetric matrix, and A∈ so(n), an anti-symmetric matrix. Given the Frobenius scalar product,
these matrices are orthogonal:

S ·A = 0. (2.110)

Consequently, the two subspaces Sym(n) and so(n) are orthogonal in the vector space of n× n matrices. In fact,
each of the two subspaces is the orthogonal complement of the other.

2.5.2 Matrix bases
Once m×n matrices have been put into the context of the vector space Rmn, it is also possible to introduce a basis
for this space and to determine the coordinates of a particular matrix relative to the basis. In this context, it may be
the case that the matrix under consideration happens to be restricted to some subspace of matrices, e.g., symmetric
or anti-symmetric matrices, and then we need a subspace basis rather than a basis for the entire embedding space.
Furthermore, there are infinitely many ways to choose a basis for Rmn, and from an algebraic point of view they
are equally valid as bases. Depending on the problem at hand, however, one basis may be a better or more natural
choice than others.

Assuming that we are dealing with general m×n matrices, representing linear transformations from Rn to Rm,
we can determine an arbitrary basis ei, i = 1, . . . ,m, for Rm and a basis b j, j = 1, . . . ,n, for Rn. We can then form
mn matrices Ei j ∈ Rm×n as

Ei j = eib>j , i = 1, . . . ,m, j = 1, . . . ,n. (2.111)

In particular if both bases ei and b j are ON-bases, then Ei j forms an ON-basis of Rm×n. As a special case, we can
choose the canonical basis of each space and obtain a canonical basis also for Rm×n. For example, if we consider
the matrix space R2×3, it has a canonical basis in terms of the 6 matrices

E11 =

(
1 0 0
0 0 0

)
, E12 =

(
0 1 0
0 0 0

)
, E13 =

(
0 0 1
0 0 0

)
,

E21 =

(
0 0 0
1 0 0

)
, E22 =

(
0 0 0
0 1 0

)
, E23 =

(
0 0 0
0 0 1

)
.

(2.112)

2.6 Affine spaces
Although an affine space can be defined in a more formal manner, in terms of specific sets and operations on these
sets, a more informal description of an affine space is given here. In fact, two slightly different but compatible
descriptions are provided.

2.6.1 As a subset of a vector space
Given a vector space V , we have already defined a subset of U ⊂ V as a subspace if U , itself, is a vector space
over the same scalar field as V . As a consequence, it follows that U must intersect the origin of V . In various
applications, however, we may be interested in describing subsets of V can be described as “displaced subspaces”.
This can be done by starting with a subspace U ⊂ V , and then construct the affine space A by adding a constant
vector v ∈V to each vector in U :

A = {u+v,u ∈U}. (2.113)

The set A is a subset of V , but it is not a subspace unless v∈U . Intuitively, we can see A as the subspace U that has
been displaced by the vector v. As an example of an affine space, take the vector space V = R3 and consider any
2-dimensional plane in V . Any such plane, regardless of whether it intersects the origin or not, is an affine space.
This specific description of an affine does not define any internal structures, such as operations that can be applied
to its elements, but still provides a useful characterization of an affine space as a subset of a vector space.

This way of constructing an affine space, by combining a subspace U ⊂ V with a displacement vector v ∈ V ,
does not produce a unique set A for every U and v. Displacing U with v1 and v2 produces the same affine space A,
as a subset of V , when v1−v2 ∈U . Given an affine space A that is produced by displacing a subspace U ⊂V , the
displacement of U can be done by any a ∈ A.

33

Given the constriction of an affine space, described above in terms of a subset of a vector space, it should be
clear that, in general, adding two elements from A, or multiplying an element of A with a scalar, does not produce
an element in A. On the other hand, it should also be clear that the difference between two elements in A is always
an element of the subspace U . This means that the operation of subtracting two elements in A can be given a
well-defined interpretation as an element in A: as vectors in V their difference lies in U , but adding the stipulated
displacement vector v to this difference moves it back to A.

2.6.2 As a vector space
Another possibility of introducing operations on an affine space is to construct a vector space from A. As already
mentioned, A is in general not a subspace of V , so a vector space structure of A cannot be related directly to that of
V , but it is possible to define a new set of operations for vector addition and scalar multiplication, indirectly from
those in V . First we must choose a specific point a0 ∈ A, that is designated as the origin of the new vector space.
In fact, we can refer to to this a0 as the displacement vector that generates A from subspace U .

Let a1,a2 ∈ A. Then the differences a1−a0 and a2−a0 both lie in U . Since U is a subspace, the sum of these
two vectors also lies in U : a1 +a2−2 a0 ∈U . Finally, it can be transported back to A, by adding the displacement
vector a0, producing a1 + a2− a0 ∈ A. Similarly, to multiply a ∈ A by the scalar s ∈ R, we first consider the
difference a−a0 ∈U . Since this lies in the subspace U , the operation of multiplying it with the scalar s is a well-
defined element of U : s(a−a0)∈U . Finally, this element can be transported back to A, by adding the displacement
vector a0: s(a−a0)+a0 ∈ A. We can summarize these results as

a1
⊕

a2 = a1 +a2− a0 (2.114)

s
⊙

a = s a+(1− s)a0 (2.115)

Here, we use
⊕

and
⊙

to denote the new operations of adding elements in A, and of scalar multiplication in A,
respectively. These two operations turn A into a vector space, but its vector space structure is distinct from that of
V and must not be confused. The fact, that A together with

⊕
and

⊙
is consistent with the properties of a vector

space does not follow immediately from these definitions, but can be shown in a straight-forward way.
An important observation to make here is that a0 indeed corresponds to the origin of the vector space A and,

consequently, the vector space structure that in defined in this way for A depends on the choice of a0 ∈ A. Two
distinct choice of a0 generate two distinct vector spaces from A. Another observation that can be made here, it that
the construction of a vector space from A only relies on the possibility of mapping differences between elements
in A to some vector space U , and on the transporting elements of U back to A. It is, in fact, not necessary that U
is a subspace of a larger vector space V , and that A is a subset of V . It suffices that the mapping of differences
between elements in A to U , and the mapping from U back to A are consistent with the idea that both U and A could
be subspaces of a vector space V . This possibility is exploited in the next section, where we consider Euclidean
spaces and their relation to Rn.

2.7 Euclidean spaces En

Basic geometry is based on the idea that the world which we live in can be abstracted as a space of points that can
be grouped into more complex objects, such as lines, planes, circles or general curves. On these objects we can
define operations that extracts measurements of, for example, length or area, or compute a point of intersection,
and determine properties such as parallel or perpendicular. Lines can be infinitely long, or we may consider a finite
segment of a line that stretches between two distinct points.

We can even make the segment directed in the sense that it has designated start and end points. We can also
transform points, or groups of points, by means of a translation specified by a certain direction and a certain
distance in that direction. This transformation can be represented by a directed line segment, where the end point
is the translation applied to the start point. Alternatively, we can rotate these points a certain angle about a certain
point or line, or even combine translations and rotations. All these geometric constructions and operations should
be well-known to the reader and can be summarized as Euclidean geometry, and the space in which it is defined is
a Euclidean space.

A defining property of Euclidean geometry is that it can be implemented in terms of physical objects as they
appear to our senses. We see the floor as a plane, the edge of our table as line, and the dot above the letter “i”

34

p

s1

s2

s1 + s2

p

s

c s

Figure 2.1: Left: Vector addition in Vp(En). Right: Scalar multiplication in Vp(En).

as a point. These objects and their geometrical relations can be described in terms of Euclidean geometry. This
correspondence between our physical world and a Euclidean space is an approximation in the sense that every
physical object, even a sub-atomic particle, has an extension and cannot be represented in terms of points, lines, or
planes other than approximately. There is also an approximation involved in the sense that we cannot produce exact
measurements of quantities such as distance or angle in the real world, they are always affected by measurement
errors. Within the limits of these approximations, however, we can identify our three-dimensional physical world
with the three-dimensional Euclidean space, denoted E3. By restricting E3 to a suitable plane of our choice, we
obtain instead E2, the two-dimensional Euclidean space. In this presentation, we will only consider these two
Euclidean spaces but, in principle, we can also consider Euclidean spaces of arbitrary dimension, where the usual
geometrical concepts or points, lines, planes, angles, etc, have to be given an intuitive or algebraic generalization.

2.7.1 En as a vector space

A Euclidean space En is not a vector space, it is essentially just a set of point that has additional structures as
defined by Euclidean geometry. We can try to think of the points in En as vectors of a vector space, but the
problem is that En has no particular point that refers to the zero vector and, consequently, we cannot define in a
meaningful way what it means to add a point with another point in En. It is possible, however, to derive a real
vector spaced from En by considering the set of directed line segments that have a common starting point p ∈ En.
This set of directed line segments is here denoted as Vp(En). The elements of Vp(En) form a vector space where
vector addition of two segments, s1 and s2, is defined by translating the start and end points of s1 by means of
s2, such that the starting point of the translated s1 coincides with the end point of s2. The resulting vector sum,
s1 + s2, is then defined as the directed line segment that starts in p, and ends in the end point of s1 after it has been
translated by s2. See Figure 2.1, left, that illustrates this vector addition. Similarly, the multiplication by c ∈ R
onto a directed line segment s ∈Vp(En) implies moving only the end point of s along the corresponding line such
that the distance between the start and end points of the resulting segment, c s, is multiplied by c relative to the
initial segment. In the case that c < 0, the end point is moved to the other side of the line relative the starting point,
p, before the distance is scaled by −c. This scalar multiplication is illustrated in Figure 2.1, right. A consequence
of this definition is that Vp(En) is a real n-dimensional vector space, where the zero vector is the degenerate line
segment that start and ends at the same point: p ∈ En.

Notice that the definition of Vp(En) is a purely geometric construction, we have not made use of concepts such
as a basis or coordinates in this space. Also note that Vp(En) is distinct from the underlying Euclidean space En:
the elements of Vp(En) are directed line segments rather than points. For a particular choice of p, however, we
can identify Vp(En) and En by equating the point r ∈ En with the vector in Vp(En) that starts at p and ends at r.
This implies that for distinct choices of p,q ∈ En we obtain distinct derived vector spaces, Vp(En) and Vq(En).

35

qp

r

s1 ∈Vp(En) s2 ∈Vq(En)

Figure 2.2: A point q ∈ En that is represented by two vectors s1 and s2 in two distinct vectors spaces Vp1(En) and
Vp2(En), respectively.

Any vector in Vp(En) is a directed line segment that starts at point p and ends in some point r ∈ En. By changing
its starting point to q, we get instead a vector in Vq(En). Both vectors represent the same point r ∈ En, given by
the end points of each of the two vectors, but otherwise the two vectors are distinct as elements of distinct vector
spaces. This is illustrated in Figure 2.2.

2.7.2 En and Rn

We have seen that En can be identified with a geometrically constructed real vector space Vp(En), consisting of
directed line segments originating at p. This identification is not unique since we can choose p as any point in
En. Despite being a vector space, Vp(En) is still a bit too abstract to be of practical use. In order to do numerical
computations, it would be a considerable help if we can use the vector space Rn instead, where the geometrical
operations that are defined in En can be given an algebraic representation that allows us to compute numerical
values, for example, of distances or angles. In order to establish such a correspondence, we need to select a
collection B of n elements in Vp(En), directed line segments all starting at p, that have two additional properties
when seen as line segments in En: they are mutually perpendicular and have unit length. The first property is
completely determined from the notion of perpendicularity in En. The second property, however, needs to be
further specified by the notion of what exactly do we mean by unit length, which, in turn, depends on the length
unit we are using in En. For example, if we want to use meter or feet as the length unit, the vectors in B should
be one meter or one feet long, respectively. Alternatively, we can select any n perpendicular vectors in Vp(En) that
have the same length, and use this length as the definition of what we mean by one unit of length.

The collection B forms a basis of Vp(En), a Cartesian basis and the basis vectors are often referred to as
coordinate axes. For example, in E3 we can choose a point of origin, p, that generates the vector space Vp(E3),
and in this vector space we select three vectors {e1,e2,e3} to form a Cartesian basis B, such that they have unit
length and are mutually perpendicular as line segments in E3. In the following, we refer to the point p together
with the basis B in Vp(En) as a frame of reference, a reference frame, or a coordinate system.

Given a reference frame, any point r ∈ E3 can be represented by a specific vector s ∈ Vp(E3), a directed line
segment in E3 that starts at p and ends at r, and from our intuitive notion of what E3 is all about, we maintain the
idea that it is possible to determine unique scalars c1,c2,c3 such that

s = c1e1 + c2e2 + c3e3. (2.116)

Since B is a basis of Vp(E3), the scalars c1,c2,c3 are the coordinates of s relative to the basis vectors. These
coordinates can conveniently be represented by the 3-tuple (c1,c2,c3) ∈ R3. In the general case, where En is the
underlying Euclidean space, any choice of a reference frame produces a set of coordinates (c1, . . . ,cn) relative to
the corresponding Cartesian basis B for any point r∈En. We refer to these coordinates as the Cartesian coordinates
of r relative to the reference frame.

Given a reference frame for En, we can also map vectors in Rn back to points in En. Any n-tuple, used as
coordinates relative to the basis of the reference frame produces a vector in the corresponding vector space Vp(En),
a directed line segment in En, and the end point of that segment in En is the resulting point of this inverse mapping.
From the construction of these two mappings, it follows that they are one-to-one, i.e., once the reference frame is
determined, each point in En is represented by a unique vector in Rn, and vice versa. Furthermore, it also follows
that the operations of vector addition and scalar multiplication in Vp(En) correspond to the same operations in Rn,
and also that the n basis vectors in the reference frame are represented by the canonical basis in Rn.

36

2.7.3 Concluding remarks

Why do we need to choose the basis vectors in the reference frame to be perpendicular and of unit length when seen
as line segments? Can we not use any n vectors for B as long as they are linearly independent and span Vp(En)?
The answer is that we want the concepts of length and perpendicularity for line segments in En to correspond to the
notions of vector norm and orthogonality of vectors in Rn, as they are defined in Section 2.2.3 and Section 2.2.4.
The distance between two points r1 and r2 in En should be equal to the vector norm of the difference between
the two vectors in Rn that represent r1 and r2, respectively. And we also want two vectors in Vp(En) that are
perpendicular as line segments in En to correspond to orthogonal vectors in Rn. This correspondence between
related concepts in En and Rn will only happen when the basis vectors of the reference frame are chosen as
mutually perpendicular and are of unit length. Notice that although the concept of angles and perpendicularity
is well-defined in E2 and E3, the notion of a scalar product between two vectors in Vp(En) is not really well-
defined unless we first map the vectors to their correspondences in Rn and compute their scalar product there. This
mapping and therefore also the resulting scalar product, however, depend on the choice of reference frame, so it is
not possible to define a scalar product in Vp(En) that is invariant to the choice of reference frame.

In summary, for a Euclidean space En with given a reference frame it is possible to uniquely represent each
point in En as a vector in Rn. More precisely, the representation in Rn is in terms of coordinates of vectors in
Vp(En) relative to the basis of the reference frame. This representation is heavily dependent on the choice of the
reference frame. Changing either the point of origin, p, or the basis B implies that one and the same point in En is
represented by another vector in Rn. This means that when we discuss points in En as vectors in Rn, this assumes
a well-defined choice of reference frame. In most cases, we do not have to specify the reference frame, but merely
assume that it exists and can be specified in its details if necessary.

For a specific Euclidean space En we can even introduce more than one reference frame, which implies that
one and the same point in En has two or more representations as vectors in Rn depending on which reference frame
the representation is derived from. Alternatively, we may think of a single reference frame for En that is not fixed.
It could move, for example, along a smooth trajectory in En while at the same time its basis vectors in B vary,
although always in such a way that they are mutually perpendicular and of unit length, e.g., by rotating the basis
vectors in one way or another. Again, this variation of the reference frame causes the representation in Rn to vary
as well, even if the original point in En is fixed.

2.8 What happens in R3 stays in R3

The last few sections provide us with the basis properties of vector spaces of type Rn, for general integers n≥ 1. In
this sections, some of these properties are given a more specific and sometimes also slightly simpler formulation
for the case n = 3. There are also some operations presented here that are defined primarily for the case n = 3.

2.8.1 Handedness

When we define a reference frame for E2, they have in practice to be ordered such that we label one of the
coordinate axes as “the first axis” and the other one as “the second axis”. This implies that the reference frames of
E2 come in two varieties: one where we can rotate the first axis 90◦ counter-clockwise to make it point in the same
direction as the second axis, and one were this happens after a 90◦ clockwise rotation. Any two reference frames
of the first type, two counter-clockwise frames, can be transformed one to the other by a suitable combination of
a translation and a rotation, a rigid transformation. Similarly, any two reference frames of the second type, two
clockwise frames, can be transformed one to the other by a suitable rigid transformation. A counter-clockwise
reference frame can, however, not be transformed in this way to a clockwise reference frame, it is necessary to
include a reflection to align one of the frames with the other. Another way to formulate the same thing: take an
object O and its reflection O′ relative to a line in E2. If O cannot be rigidly transformed into O′ then the object has
what it called handedness or chirality. Consequently, as soon as the coordinate axes are given a specific order, the
frame has a handedness, in this case manifested as two types of “orientations” of the frames. The chirality aspect
of a reference frame is not an issue until we start to discuss transformations in the space, in particular related
to rotations. Depending on the orientation of the reference fame, one and the same rotation will have a slightly
different representation, e.g., in terms of transformation matrices. In order to deal with these transformations in

37

e2

e1

e3

e1

e2

e3

Figure 2.3: Left: a left-handed coordinate system. Right: a right-handed coordinate system.

practice, the orientation of the reference frame must be clear. Otherwise, it is possible that strange things start to
happen, such as objects in E2 that rotate in the opposite direction compared to what you expected.

The same thing occurs in E3, where reflection is made relative to a plane instead of a line. Again, we get
two types of orientations of a reference frame that usually are referred to as right-handed and left-handed. In
a right-handed reference frame, you can place the right hand thumb pointing along the first coordinate axis, the
index finger pointing along the second axis. The middle finger should then be pointing along the third axis. In
a left-handed reference frame the same procedure applies but now to the fingers of the left hand. A right-handed
frame cannot be rigidly transformed to a left-handed frame: we require a reflection to accomplish an alignment.
The two types of reference systems are illustrated in Figure 2.3. As in E2, the handedness of a reference frame in
E3 is not an issue until we start to rotate.

In the following presentation, and unless stated otherwise, we will use the “anti-clockwise” type of reference
frames for E2, and the right-handed type for E3, since they are the standard types in mathematical literature. In
general, pay attention when you are dealing with an externally defined reference system, it can be of any type.

2.8.2 Vector cross product in R3

Let a and b be two vectors in R3:

a =

a1
a2
a3

 , b =

b1
b2
b3

 . (2.117)

Given these two vectors, we define their cross product, denoted a×b, as

a×b =

a2b3−a3b2
a3b1−a1b3
a1b2−a2b1

 . (2.118)

This operation on pairs of vectors in R3 has several useful properties, where those of immediate use in this presen-
tation are listed below:

1. The cross product is anti-symmetric: a×b =−b×a.

2. The cross product a×b is always orthogonal to both a and b: (a×b) ·a = (a×b) ·b = 0.

3. The norm of the cross product scales with the norms of the two vectors and the sinus of the angle α between
them: ‖a×b‖= ‖a‖ · ‖b‖ · |sinα|.

4. The cross product of a vector with itself vanishes: a×a = 0.

38

a

b

n̂

α

Figure 2.4: A geometric definition of the cross product in a right-handed coordinate system.

The cross product is here defined in a strictly algebraic way, Equation (2.118), in terms of how the elements of
vectors a and b are mapped to the elements of the cross product a×b. In practice it may be useful to also have
a geometric interpretation of the cross product in E3. To do so, however, it is necessary to know the orientation
of the coordinate system. In our case we have a right-handed coordinate system, and this implies that the cross
product of a and b is given by

a×b = ‖a‖ · ‖b‖ · sinα · n̂, (2.119)

where α ≥ 0 is the smallest positive angle between a and b, (which implies that sinα ≥ 0), and n̂ is a normalized
vector given by the right-hand rule, as illustrated in Figure 2.4. The right-hand rule implies that you can have your
index and middle fingers point in the direction of a and b, respectively, and then your right-hand thumb points in
the direction of n̂, perpendicular to a and b. In this case do a and b not have to be perpendicular, but the angle in
between, α , should be the smallest possible. A consequence of this way of constructing n̂, it follows that {a,b, n̂},
in this order, form a right-handed basis.

The definition of the cross product applied to the vectors of a right-handed ON-basis in R3, e1,e2,e3, and the
right-hand rule, lead to

e1× e2 = e3, e2× e3 = e1, e3× e1 = e2. (2.120)

2.8.3 The determinant of a 3×3 matrix

The expression of the determinant of a 3×3 matrix given in Equation (2.59) is correct but can be reformulated into
a more practical form. Let M be a 3×3 matrix with columns c1,c2,c3: M = (c1 c2 c3). It then follows that

det(M) = (c1× c2) · c3 = (c2× c3) · c1 = (c3× c1) · c2 (2.121)

These expressions in the vectors c1,c2,c3 are referred to as scalar triple products.

2.8.4 The inverse of a 3×3 matrix

The formulation of the inverse of a 2×2 matrix in Equation (2.69) can be extended to the 3×3 case without going
over the recursive formula in Equation (2.68). Let M be a 3×3 matrix with columns c1,c2,c3: M = (c1 c2 c3). It
then follows that

M−1 =
1

det(M)
(c2× c3 | c3× c1 | c1× c2)

>. (2.122)

39

2.8.5 Rotation matrices in R3, SO(3)

A 3×3 rotation matrix R ∈ SO(3) satisfies the constraints

R>R = I, and det(R) = 1. (2.123)

The constraint R>R = I mean that the three columns in R = (r1 r2 r3) form an ON-basis:

r1 · r1 = r2 · r2 = r3 · r3 = 1, and r1 · r2 = r2 · r3 = r3 · r1 = 0. (2.124)

The constraint det(R) = 1 implies that the three vectors r1,r2,r3 form a right-handed ON-basis. From this follows
that each of the three vectors can be obtained as a cross product of the other two:

r1× r2 = r3, r2× r3 = r1, r3× r1 = r2. (2.125)

Equations (2.124) and (2.125) are valid if we instead consider the rows of R, rather than its columns. This implies
that a rotation matrix is uniquely specified from only two of its columns or two of its rows.

2.9 Linear equations
Let A be an m×n non-singular matrix, x ∈ Rn, and b ∈ Rm such that

A x = b. (2.126)

This type of relation between a matrix and two vectors appear frequently throughout this presentation, and may
even be said to form a main theme. To make it more concrete we assume that A and b are known and we want
to determine x such that Equation (2.126) is satisfied. Although this equation looks very simple to the eye, there
are some issues that need to be considered in order to understand how to solve Equation (2.126). One issue is how
many solutions Equation (2.126) has, and another is what they look like, i.e., how to compute them.

As for the first issue, it may be that there exists a unique solution for Equation (2.126), or it may have multiple
solutions, or it may even have no solution at all. Which of the three cases that applies depends mainly on A, but to
some extent also on b. As for the second issue, it makes sense to distinguish between the two cases when b 6= 0 and
b = 0, respectively. This is because the set of solutions for the two cases have different character and the solution
methods are also different. In the first case, when b 6= 0, we refer to Equation (2.126) as an inhomogeneous linear
equation. In the second case, when b = 0, we refer to Equation (2.126) as a homogeneous linear equation. We
will now analyze the two cases separately.

2.9.1 Inhomogeneous linear equations
We consider Equation (2.126) when b 6= 0, i.e., we want to solve an inhomogeneous linear equation. This case can
be further divided into several subcases that in a practical situation have to be treated differently. The first three
subcases assume that A has full rank, while the last subcase deals with A being rank deficient.

• In the first case, we assume that A is square and non-singular, and we can then formulate x as

x = A−1b. (2.127)

As was mentioned in Section 2.4.3, however, this expression shall not be taken as an explicit recipe for the
computation of x as first finding the matrix inverse of A and then multiplying that inverse onto b. It can also
be taken as a description of x as the solution of solving Equation (2.126) by means of Gaussian elimination
or other more advanced methods for solving a square non-singular inhomogeneous linear equation. We will
leave the specific implementation of how to compute x in Equation (2.127) aside, and instead observe that
as long as A is square and non-singular there exists a unique solution for x.

• The second case to consider appears when A is m×n with full row rank. This means that A has a range that
includes all of Rm and it is possible to determine at least one x that solves Equation (2.126). In accordance
with Equation (2.46), it also follows that Null(A) is of dimension n−m. Furthermore, if x = x0 solves

40

Equation (2.126) then so will x = x0 +n for any n ∈ Null(A). In summary, the set of solutions has n−m
“dimensions”, but it is not a subspace of Rn. Since b 6= 0, the solution set cannot include 0, so it does not
intersect with the origin. It is rather an n−m dimensional subspace of Rn that has been displaced by x0, an
affine space as it is defined in Section 2.6.1. With this observation in mind, we still need to determine an x0
that solves Equation (2.126). For example, we can choose

x0 = A>(A A>)−1b = A+b, (2.128)

where A+ is the pseudo-inverse of A. This follows since A+ in this case is a right inverse of A: Ax =
A A+b = b. In summary, when m×n matrix A is of full row rank, Equation (2.126) is solved by

x = x0 +n = A+b+n, (2.129)

where n∈Null(A). Before we leave this case, it should be noted that x0 described in Equation (2.128) is just
one of infinitely many choices that can be made. Any point in the affine space described by Equation (2.129)
can be used as x0. There is, however, one property of x0 in Equation (2.128) that makes it unique. Notice
that this x0 ∈ Range(A>) and that n in Equation (2.129) lies in Null(A). From Equation (2.42) follows that
x0 and n are orthogonal and Equation (2.21), finally, gives

‖x‖2 = ‖x0‖2 +‖n‖2. (2.130)

This implies that the norm of x is minimal when n = 0, which means that x0 in Equation (2.128) is the vector
of minimal norm that solves Equation (2.126).

• The third case appears when A is m× n with full column rank. Here, A represents a linear transformation
from Rn to Rm, but its range may not be the entirety of Rm. This means that Equation (2.126) can only be
solved in the case that b ∈ Range(A). If not, there is no x that solves the equation. As an alternative in this
case, we can instead try to determine x that minimizes the difference between the left and right hand sides
of Equation (2.126). We defer further analysis of this case until Section 2.10 where least squares problems
are discussed more in detail, since that approach includes the case when b ∈ Range(A).

• The fourth case appears when A is rank deficient. This situation can be analyzed separately for different sizes
of A, but can be conveniently summarized as one consistent result based on the singular value decomposition,
presented in more advanced topics.

2.9.2 Homogeneous linear equations
We now consider Equation (2.126) for b = 0, when we have the homogeneous equation:

A x = 0. (2.131)

A characteristic difference compared to the inhomogeneous case is that any solution x of Equation (2.131) can
be multiplied by an arbitrary scalar and the result is, again, a solution of Equation (2.131). More general, if x1
and x2 are two distinct solutions of Equation (2.131), then any linear combination of the two is, again, a solution.
Consequently, the solutions to Equation (2.131) form a subspace of Rn, and trivially this subspace is Null(A). Also
trivially, x = 0 always solves Equation (2.131), and normally this solution is therefore not interesting: we want to
determine x 6= 0 that solves Equation (2.131).

For a square A, Equation (2.131) can be seen as a special case of the eigenvalue relation in Equation (2.83),
where e = x and λ = 0. Consequently, in this case we can solve Equation (2.131) by first determining the eigenval-
ues of A. If there is an eigenvalue = 0, the corresponding eigenspace can be identified as Null(A), and it contains
all the solutions of Equation (2.131). If there is no eigenvalue of A that is zero, the null space of A is trivial: no
solutions of Equation (2.131) exists other than 0.

This discussion applies also to the general case, when A is m× n. We can identify the solutions of Equa-
tion (2.131) with Null(A), although in this case it cannot be derived directly in terms of an eigensystem of A, as
this is not defined for this case. On the other hand, we notice that both sides of Equation (2.131) can be multiplied
from left with A>:

A>A x = 0. (2.132)

41

This means that an x that solves Equation (2.131) must be an eigenvector of A>A corresponding to eigenvalue = 0.
In fact, a complete set of solutions of Equation (2.131) is given by the eigenspace corresponding to an eigenvalue
zero of A>A. Consequently, a practical implementation of finding the solutions of Equation (2.131) is to determine
the eigenspace of A>A that corresponds to an eigenvalue zero. This means that if there is no such eigenvalue, and
Equation (2.131) has only the trivial solution x = 0.

This last statement has to be taken with same care, since any practical numerical implementation that computes
the eigenvalues of A>A will be affected by some amount of inaccuracies. This means that a statement like “an
eigenvalue equal to zero” must allow very small eigenvalues to be interpreted as “zero”. On the other hand, the
inaccuracies in the eigenvalues are also related to uncertainties in the elements of A, usually because they are
derived from quantities that are measured by means of a process that includes some measurement noise. Any
practical implementation of solving Equation (2.131), using the eigenvalues of A>A or any other method, must
deal with this problem of interpreting what is meant by some quantity is “equal to zero” when that quantity has
numerical inaccuracies.

The approach for solving Equation (2.131) that is discussed here, based on an eigenvalue decomposition of
A>A, has the practical advantage of being straight-forward to implement, at least for moderate sizes of A and
when software is available for the eigenvalue decomposition. However, it has numerical issues that makes it less
attractive for solving Equation (2.131) in the general case. If m is very large, the result of computing A>A may
be affected by additional numerical inaccuracies since each element in this matrix is a sum of m terms where
each term is a product of elements in A, and each such product has a round-off error. This additional inaccuracy
may introduce errors in the eigenvalues that can seriously perturb the solutions. Furthermore, if n is very large,
we probably need to store A>A as the very large n× n matrix in order to solve the eigenvalue decomposition.
Furthermore, EVD of a large matrix has more numerical inaccuracies than of a smaller matrix.

In more advanced topics, we will consider an alternative approach for solving Equation (2.131) in the general
case, based on a singular value decomposition of A. In general, this is the preferred approach.

2.10 Least squares problems
In the discussion on how to solve the linear equation Equation (2.126) it was mentioned that a possible outcome is
that there is no solution. This typically happens when A is m×n and of full column rank, but is also an possibility
as soon as A is rank deficient. In all these cases, Range(A) is not the entirety of Rm and only if b ∈ Range(A) it
is possible to find a solution x. A practical approach to find a meaningful solution to the linear equation anyway,
is to determine an x that minimizes the difference between the left and right hand sides of Equation (2.126). This
difference is the residual, r, defined as

r = A x−b, where r =

r1
...

rm

 ∈ Rm. (2.133)

We want to find x that minimizes ‖r‖, but since it is easer to deal with squares of norms rather than the norms
directly, and we get the same solution, we define a cost function ε as

ε = ‖r‖2 = r>r = r2
1 + . . .+ r2

m, (2.134)

and formulate the least squares problems related to Equation (2.126) as finding the x that minimizes ε .
To find this x, we expand ε as a function of x:

ε = ε(x) = ‖A x−b‖2 = (A x−b)>(A x−b) = x>A>A x−2 x>A>b+b>b. (2.135)

With y = Ax, it follows that y ∈ S, the subspace of Rm spanned by the columns of A. If y also is given by the x
that minimizes ε , it must be the case that b−y> ⊥ S. To see this, let b−y> ⊥ S and consider w = y+ z for some
z ∈ S, and minimize ‖b−w‖ over different choices of z. We get

‖b−w‖2 = (b−w)>(b−w) = (b−y− z)>(b−y− z) =

= (b−y)>b+ z>z− (b−y)w︸ ︷︷ ︸
=0

−z>(b−y)︸ ︷︷ ︸
=0

= (b−y)>b+ z>z (2.136)

42

From this expression it follows immediately that ‖b−w‖ is minimized when z = 0. Consequently, ε is minimized
when y = A x is chosen such that b−y⊥ S. This happens exactly when A>(b−A x) = 0 or

A>A x = A>b. (2.137)

This is the normal equation of the least squares problem. Any x that minimizes the residual must solve the normal
equation Equation (2.137).

Consequently, solving a least squares problem brings us back to solving a linear equation, Equation (2.137).
This equation can be inhomogeneous or homogeneous, depending on whether b 6= 0 or not. In particular when A is
m×n of full column rank, it is not possible to solve the linear equation Equation (2.126) in the general case. We can
then instead solve the corresponding least squares problem in terms of the normal equation Equation (2.137). The
normal equation is either an inhomogeneous or homogeneous linear equation, and has to be solved accordingly.

In the case that A has full column rank, the normal equation Equation (2.137) is solved as

x = (A>A)−1A>b = A+b. (2.138)

2.10.1 Concluding remarks
We can summarize the results from the last two sections on solving the linear equation Equation (2.126) and least
squares problems as: as long as A is of full rank we can determine solutions to Equation (2.126) in accordance
with

• A is n×n: x = A−1b.

• A has rank m < n: x = A+b+n, where n ∈ Null(A).

• A has rank n > m: the linear equation cannot be solved in general, but a least square solution that minimizes
the residual is given as x = A+b.

All other cases can be analyzed as well, although this relies on more advanced techniques such as singular value
decomposition that is not presented here.

2.11 Cn as a vector space
A complex number c∈C can be written c = a+ ib, where a,b∈R and i is the imaginary unit that satisfies i2 =−1.
The complex conjugate of c, denoted c∗, is defined as c∗ = a− ib.

Cn is the complex vector space of ordered n-tuples of complex numbers. As a vector space it share many of the
properties that have already been described for Rn, although in some cases with minor modifications. Things like
vector addition and scalar multiplication work in the same was as for Rn, but now over the scalar field C. Similarly,
linear combinations, linear independence, linear span, bases, coordinates, and canonical basis are defined in a
similar way relative to Rn but, again, with C as the scalar field. In the remainder of this section we review concepts
that do not generalize straightforwardly from Rn to Cn.

2.11.1 Scalar product and norm
A principle difference between Rn and Cn appears when we come to the scalar product. With

a =


a1
a2
...

an

 , b =


b1
b2
...

bn

 , where ak,bk ∈ C, k = 1, . . . ,n, (2.139)

we define the scalar product between a and b as

a ·b = a1 b∗1 + . . .+an b∗n =
n

∑
k=1

akb∗k . (2.140)

43

Notice the complex conjugation of the elements of b. We return to a motivation for this operation later, and instead
make obvious observations from this definition.

First, the scalar product in Rn is symmetric, but in Cn it is instead Hermitian, which formally is defined as:

a ·b = (b ·a)∗. (2.141)

This means that changing the order of the two vectors in a scalar product is the same as a complex conjugation of
the scalar product. Second, the scalar product is not linear in the two vectors, it is linear in the first vector argument
and semi-linear in the second vector argument:

(α1a1 +α2a2) · (β1b1 +β2b2) = α1β
∗
1 (a1 ·b1)+α1β

∗
2 (a1 ·b2)+α2β

∗
1 (a2 ·b1)+α2β

∗
2 (a2 ·b2). (2.142)

This means that scalars that are “inside” the second vector argument can only brought to “outside” the scalar
product after a complex conjugation. Consequently, the scalar product on Cn is sometimes referred to as sesqui-
linear.

We now come to the motivation for introducing the complex conjugation in Equation (2.140). It follows that

a ·a = |a1|2 + . . .+ |an|2 =
n

∑
k=1
|ak|2. (2.143)

This means that a ·a is always a real number ≥ 0, and it makes sense to define

‖a‖= (a ·a)
1
2 =

√
|a1|2 + . . .+ |an|2. (2.144)

In particular, this norm makes sense since it satisfies the triangle inequality for vectors in Cn. Without the complex• The triangle inequality for norms in vector
spaces is described in Equation (2.14),
Section 2.2.3. conjugation in Equation (2.140), it would not be the case that a · a is real in general. As in Rn, a vector in Cn is

referred to as normalized when it has unit norm.
In the literature, you will sometimes find that the complex conjugation applies to the elements of the first

vector in the scalar product of Cn and, consequently, it is the first vector argument of the scalar product in Cn that
is semi-linear. This is just a matter of convention, and here we stick to the variant defined in Equation (2.140).

2.11.2 Orthogonality
Although the concepts of angles in Rn can be extended to Cn it becomes very abstract since also the angles
can become complex valued. The concept of orthogonality translates straightforward: two vectors a,b ∈ Cn are
orthogonal when a ·b = 0. This, in turn, allows us to define what we mean with orthogonal subspaces of Cn, with
an orthogonal complement, with an orthogonal collection of vectors, and with an orthogonal basis. Furthermore,
an orthonormal basis for Cn is a basis that forms an orthogonal collection of normalized vectors. All these concepts
are defined exactly as in Rn based on the formulation of orthogonality of two vectors in Cn.

2.11.3 Linear transformations and matrices
• Read about linear transformation in Rn in
Section 2.2.5. Linear transformation between Cn and Cm, denoted Cm×n, are defined similarly to what was done for Rn×n,

with the difference that the scalar field now is C. Range, null space, and the rank-nullity theorem are defined
accordingly. Any linear transformation in Cm×n can be represented as a set of m× n scalars, complex numbers,
relative the canonical bases of Cn and Cm.

This leads us to complex matrices, that are constructed in a similar way as the real matrices and for which
a matrix product can defined in the same way. In the same way as for the real vector spaces, complex m× n• Real matrices and their product are

defined in Equation (2.33), Section 2.3. matrices can be identified with linear transformations in Cm×n, where the actual transformation is implemented as
multiplication of the corresponding matrix onto the vector in Cn as an n×1 matrix.

Complex conjugation

The operation of complex conjugation of a complex number can be extended in a straightforward manner to be
applied to vectors in Cn or matrices in Cm×n, by taking the complex conjugate of each individual element. Such
an operation, however, is not the natural algebraic extension of complex conjugation. For this reason, we use a

44

different notation when complex conjugation alone is applied to vectors or matrices. With v ∈ Cn and M ∈ Cm×n,
we use conj(v) and conj(M) to denoted the vector and matrix with all their elements complex conjugated relative to
v or M, respectively. In the same way as complex conjugation distributes over multiplication in C, it is distributive
over the matrix product of complex matrices:

conj(A B) = conj(A) conj(B), (2.145)

for matrices A and B with sizes that make the matrix products well-defined.

Conjugate transpose
• Read about adjoint operators in
Section 2.3.3.Adjoint operators are introduced to allow a linear transformation to be applied to either of two vectors before they

are scalar multiplied. A specific linear transformation can be applied to one of the two vectors, or the corresponding
adjoint transformation can be applied to the other vector, and the result is the same after a scalar product. In a real
vector space the concept of an adjoint operator is implemented in terms of the transpose of the corresponding
matrix. Due to the fact that the scalar product in Cn includes a complex conjugation, the adjoint operator in Cn

must be defined accordingly. For an m×n complex matrix M, we define the conjugate transpose of M as the n×m
matrix, denoted M∗, given by:

M∗ =
(
conj(M)

)>
= conj

(
M>
)
. (2.146)

The conjugate transpose M∗ implements the adjoint operator relative the scalar product in Cn and Cm:

a · (M b) = (M∗a) ·b, (2.147)

for all a ∈ Cm and b ∈ Cn.
The scalar product between two vectors a,b ∈ Cn can be implemented as a matrix product:

a ·b = b∗a. (2.148)

Notice the change of order between the two vectors in the left and right-hand sides of this equation. This is a
consequence of the scalar product being semi-linear in the second vector argument.

Other matrix operations

Apart from the conjugate transpose, most of the other operations on complex matrices work in the same way as
for real matrices. This includes rank of m× n complex matrices, and trace, determinant, and inverse for square
complex matrices are similar to the real case. The operation of conjugate transpose for complex matrices work in
a similar way as the ordinary transpose for real matrices:

det(M∗) = det(M)∗, (2.149)
(A B)∗ = B∗A∗, (2.150)

(M∗)−1 = (M−1)∗. (2.151)

2.11.4 Common types of complex matrices
• Read about different classes of real
matrices in Section 2.4.4.Most of the common classes of real square matrices can be generalized to the case of complex matrices. Some of

them are presented here.

Hermitian matrices

A matrix M ∈ Cn×n is Hermitian when M∗ = M. We can decompose M into its real and imaginary parts: M =
Mre+ iMim where both Mre,Mim ∈Rn×n. If M is Hermitian, this means that Mre must be symmetric and Mim anti-
symmetric. The set of Hermitian matrices forms a subspace of Cn×n that has n(n+ 1)/2 dimensions. Hermitian
matrices as linear transformation acting on Cn can be seen as the counterpart of symmetric matrices acting on Rn.

45

Anti-Hermitian matrices

A matrix M ∈ Cn×n is anti-Hermitian when M∗ = −M. We can decompose M into its real and imaginary parts:
M = Mre+ iMim where both Mre,Mim ∈Rn×n. If M is anti-Hermitian this means that Mre must be anti-symmetric
and Mim symmetric. The set of anti-Hermitian matrices forms a subspace of Cn×n that has n(n−1)/2 dimensions.
This subspace is denoted su(n). Complex matrices in su(n) can be seen as the counterpart of so(n) for real matrices.

Decomposition of general matrices

A general matrix M∈Cn×n can always be uniquely decomposed into a sum of an Hermitian and an anti-Hermitian
matrix:

M = S+A, (2.152)

where S = 1
2 (M+M∗) is Hermitian and A = 1

2 (M−M∗) is anti-Hermitian.

General linear transformation

A matrix M ∈ Cn×n with det(M) 6= 0 is a general linear transformation. The set of general linear transformations
forms the general linear transformation group, denoted GL(n). This is the same idea and name as in the real case.
In the case where the context does not indicate which vector space it is, we can use GL(n,R) and GL(n,C) denote
the two distinct transformation groups on the vector spaces Rn and Cn, respectively.

Unitary matrices

A matrix M ∈ Cn×n is a unitary matrix when M∗M = I. This implies that M∗ = M−1, and also that M M∗ = I.
Furthermore, it must be the case that |det(M)| = 1. The set of unitary n× n matrices together form the unitary
group, a subgroup of GL(n,C), denoted U(n). Complex matrices in U(n) are the counterpart to real matrices in
O(n).

Special unitary matrices

A matrix M ∈U(n) is a special unitary matrix if det(M) = 1. The set of all special unitary matrices together form
the special unitary group, a subgroup of U(n), denoted SU(n). Complex matrices in SU(n) are the counterpart to
real matrices in SO(n).

2.11.5 Eigenvalues, eigenvectors, and diagonalization

The idea of eigenvalues and eigenvectors of a complex square matrix work in the same way as for real matrices,
i.e., e 6= 0 is an eigenvector of M ∈ Cn×n with corresponding eigenvalue λ if

M e = λ e. (2.153)

The eigenvalues are the roots to the characteristic polynomial pM(λ) = det(M− λ I), where we use µ(λ) to
denote the multiplicity of λ as a root of pM. To each eigenvalue λ there is subspace Eλ ⊂ Cn which contains all
eigenvectors e that satisfy Equation (2.153), where 1 ≤ dim(Eλ) ≤ µ(λ). If dim(Eλ) = µ(λ) for all eigenvalues
λ , then M is diagonalizable as

M = E D E−1, (2.154)

where E∈Cn×n holds a basis of eigenvectors in its columns, and D∈Cn×n is diagonal and holds the corresponding
eigenvalues in its diagonal. If dim(Eλ) 6= µ(λ) for some eigenvalue λ , then M cannot be diagonalized and M is
said to be defective.

46

2.11.6 Frobenius scalar product and norm
• Read about the Frobenius scalar product
for real matrices in Section 2.5.1. The Frobenius scalar product defined for real matrices extends in a straightforward way to complex matrices. With

A,B ∈ Cm×n we define their Frobenius scalar product as

A ·B = trace(B∗A). (2.155)

In the same as for the Frobenius scalar product for real matrices, this is a generalization of the scalar product for
vectors, where the matrices here have been reshaped as vectors in Cmn. As a consequence the Frobenius scalar
product in Cm×n is not symmetric, but rather Hermitian:

A ·B = (B ·A)∗. (2.156)

The scalar product defines a norm for complex matrices, the Frobenius norm:

‖A‖2
F =
√

A ·A =
√

A∗A. (2.157)

The Frobenius norm for complex matrices is invariant to unitary transformations:

‖A‖F = ‖Q1A Q2‖F . (2.158)

Here, Q1 ∈U(m) and Q2 ∈U(n). In the case that A is n× n and diagonalizable with a unitary transformation:
A = E D E∗,E ∈U(n), its Frobenius norm can be expressed in terms of its eigenvalues in D:

‖A‖F =
√

trace(E D∗E∗E D E∗) =
√

trace(D∗D) =
√
|λ1|2 + . . .+ |λn|2. (2.159)

This result does not hold for a general A that is diagonalizable, E∈U(n) is both a sufficient and necessary condition
for Equation (2.159) to be valid.

47

48

Chapter 3

Calculus

Differentiation and integration of one-variable functions is assumed to be known already from secondary school.
What is discussed here are certain concepts and properties required for understanding more advanced topics.

3.1 Functions on R
The simplest class of functions studied in calculus is real-valued functions on R, i.e., functions that map R onto
itself.

3.1.1 Derivatives
The derivative of a one-variable function f : R→R should be a familiar concept to the reader and, here, we merely
make the observation that it can be treated in two related, but slightly different, meanings.

Derivative as a linear mapping

In the first sense, the derivative of f is a new one-variable function f ′ : R→R, with a value at point x given as the
limit

f ′(x) = lim
h→0

f (x+h)− f (x)
h

= lim
x0→x

f (x0)− f (x)
x0− x

(3.1)

Whenever we use derivatives, it is assumed that this limit value is well-defined, at least for the values of x that are of
interest for the particular problem at hand. This definition of the derivative f ′ can be seen as a linear transformation
on the set of function, at least if we restrict our attention to functions f for which f ′ is a well-defined. This linear
transformation, the derivative operator, is sometimes denoted D and we can write

f ′ = D f . (3.2)

An important aspect of D is that this operator is independent of what we choose to call the function variable. If f
is a function R→ R, then this means that it returns a real value for any real number that we apply it on. f can be
applied to the value 0 or 42, or to x or y. These are just different values that f can be applied to, and independent
of its value or what we choose to call the variable, D f gives the same function f ′ as the derivative of f .

Higher order derivatives of f are obtained by applying the derivative operator D multiple times to f . For
example, the second derivative of f is given as

f ′′ = D2 f = D D f = D f ′ (3.3)

Derivative with respect to a specific variable

As an alternative, we may refer specifically to the derivative of f with respect to some specific variable. In the case
that this variable is x, the derivative of f with respect to x is a function that is denoted

d f
dx

. (3.4)

49

In order to be well-defined, Equation (3.4) relies on x being established as the variable of f . For example, in the
case that f is defined as f (z) = 2+ z, then the derivative in Equation (3.4) is not well-defined unless there is some
connection between x and z. In many practical applications, f is defined as function of a variable, e.g., x, and then
derivative in Equation (3.2) coincides with the derivative described in Equation (3.4). In general, however, it is not
true that the derivative in Equation (3.2) is equal to the derivative in Equation (3.4). This is illustrated by the chain
rule.

The chain rule

In some applications f may be defined as a function of a variable, e.g., y, and y, itself, is a function of x. For
example:

f (y) = y2, where y = sinx. (3.5)

The derivative of f is then given as

f ′(y) =
d f
dy

= 2 y. (3.6)

In some cases, we may instead be interested in the derivative of f with respect to x, rather than y. This former
derivative is given by the chain rule:

d f
dx

=
d f
dy

dy
dx

. (3.7)

Given the example above, the derivative of f with respect to x amounts to

d f
dx

=
d f
dy

dy
dx

= 2 y cosx = 2 sinx cosx = sin2x. (3.8)

In practice, these observations imply that the concept “derivative of a function” should be used with some
care. In particular, if there are several variables or parameters that appear in the definition of the function f , it is
important to specify which one is the true function variable. The derivative in Equation (3.2) then refers to the
derivative of this specific variable. If the derivative of f with respect to any other variable or parameters appears
in some expression, we should instead use the chain rule to determine this derivative.

Stationary points

The value of f ′(x0) represents the rate of change of the function f at x0. If f ′(x0) > 0 the function increases,
and if f ′(x0) < 0 the function decreases. If f ′(x0) = 0, the function has a stationary point at x0. It is a necessary
requirement for x0 to be a stationary point in order for f to have a local minimum or maximum at x0. The local
properties of f in a region around x0 are characterized also by the second order derivative f ′′, representing the
rate of change in the first order derivative f ′. The function f has a local minimum at x0 if f ′′(x0) > 0, or a
local maximum if f ′′(x0) < 0. If f ′′(x0) = 0 at the stationary point x0, the character of f at this point cannot be
determined from the second order derivative along and, instead, we need to analyze higher order derivatives at x0
in order to establish the local behavior of f at this point.

3.2 Functions on Rn

In Chapter 2, we discussed linear transformations, a special class of functions on Rn, and their representation in
terms of matrices. In this section we look at general functions that map Rn to some set, the co-domain of f .

In the case that the co-domain is R, we consider a function f : Rn→R and we use f (v) to denote the result of
applying f to a vector v ∈ Rn. In this case, we can use the fact that Rn can be expanded as the Cartesian product
Rn = R×R× . . .×R. As a consequence, we can treat f either as a function of the single vector variable

v =

v1
...

vn

 ∈ Rn, (3.9)

50

or as a multi-variable function of the n variables v1, . . . ,vn ∈R. Both views are applicable and it may even be useful
to shift between the two depending on the situation, or what problem f refers to. For example, in some situations
it may be convenient to use the compact notation f (v) for the function value at v, instead of f (v1, . . . ,vn). In other
cases, it may instead be useful to consider the derivatives f with respect to the different elements of v, and then f
as a function of n real variables may provide a better description.

Partial derivatives

When f : Rn→R, we can study the derivative of f with respect to each of the n variables. These derivatives form
what is referred to as the n partial derivatives of f , each of them describes the rate of change in f when one single
variable changes and the other are kept fixed. If the n variables of f are denoted v1, . . . ,vn, the n partial derivatives
of f are denoted

∂ f
∂vk

, k = 1, . . . ,n. (3.10)

Notice the difference in notation relative to the derivative of a function of a single variable in Equation (3.4).

Gradient

The collection of all n partial derivatives of f : Rn→ R, seen as a vector in Rn is referred to as the gradient of f .
The gradient of f , denoted ∇f , is defined as

∇f =



∂ f
∂v1

∂ f
∂v2

...
∂ f
∂vn


∈ Rn. (3.11)

Note that ∇f : Rn→ Rn.
Given a point v ∈ Rn and a unit vector n̂ ∈ Sn−1 we can define a one-variable function g as

g(x) = f (v+ n̂ x), (3.12)

which describes the variation of f in the direction defined by n̂ at the point v. Since n̂ is normalized, x gives the
distance from v in the direction of n̂. Using the chain rule, we get

g′(x) =
dg
dx

= ∇f · n̂. (3.13)

This means that ∇f , as a vector in Rn, represents the direction from v in which f has its highest positive rate of
change. Similarly, −∇f represents the direction from v in which f has its highest negative rate of change.

Stationary points

If ∇f (v) = 0 at some point v ∈Rn, we say that v is a stationary point of f . If f has a local maximum or minimum
at v, then it must be the case that v is a stationary point, i.e., ∇f (v) = 0. The opposite implication, however, is
not true: a stationary point of f must not correspond to a a local maximum or minimum. In order to establish the
character of a stationary point v, we also need to investigate the Hessian of f at v.

51

Hessian

The local properties of f around a stationary point v are described by the Hessian of f at v, consists of all possible
combinations of second order derivatives of f , collected by the symmetric n×n matrix

H{ f}= ∇∇
> f =



∂ 2 f
∂v2

1

∂ 2 f
∂v1 ∂v2

. . . ∂ 2 f
∂v1 ∂vn

∂ 2 f
∂v2 ∂v1

∂ 2 f
∂v2

2
. . . ∂ 2 f

∂v2 ∂vn

...
...

. . .
...

∂ 2 f
∂vn ∂v1

∂ 2 f
∂v2 ∂vn

. . . ∂ 2 f
∂v2

n


. (3.14)

The character of the Hessian, as a quadratic form (see Section 2.4.8), determines the character of f in a local region
of a stationary point v as follows:

1. If H{ f} is positive definite: f has a local minimum at v.

2. If H{ f} is positive semi-definite: f may have a local minimum at v, but this depends in higher order
derivatives of f and cannot be determined from the Hessian alone.

3. If H{ f} is negative definite: f has a local maximum at v.

4. If H{ f} is negative semi-definite: f may have a local maximum at v, but this depends in higher order
derivatives of f and cannot be determined from the Hessian alone.

5. If H{ f} is indefinite: f has a saddle point at v: it appears as local minimum in certain directions and a local
maximum in other directions.

In practice, cases 1 and 3 that are of main interest since they allow us to immediately know something about
the nature of a stationary point. Cases 2 and 4 can be further analyzed in terms of higher order derivatives but
typically lead to non-trivial results, and will not be further discussed here. Case 5, finally, implies that f has as
saddle-point at v, a point from which f increases in some direction and decreases in other. This is an example of a
stationary point that does not correspond to an optimum, neither as a minimum nor as a maximum.

Total derivative

In the case of an n-variable function f : Rn→ R, where each of the n variables, vk,k = 1, . . . ,n, is a function of
some variable t, then the derivative of f with respect to y is given by an extended version of the chain rule, as

d f
dt

=
∂ f
∂v1

dv1

dt
+

∂ f
∂v2

dv1

dt
+ . . .+

∂ f
∂vn

dv1

dt
= ∇f · dv

dt
, (3.15)

where v = (v1, . . . ,vn). The left-hand side of Equation (3.15) is referred to as the total derivative of f , relative to
the single variable t.

3.2.1 Taylor expansion
A one-variable function f : R→ R can have a Taylor expansion at the point x0 in terms of the power series

f (x0 +h) = f (x0)+ f ′(x0)h+
1
2

f ′′(x0)h2 + . . .=
∞

∑
k=0

1
k!

f (k)(x0)hk, (3.16)

where f (k)(x0) denotes the k-th order derivative of f evaluated at point x0. The power series in the right hand
side of Equation (3.16) is the Taylor series of f at the point x0. This result implies that at, and in the vicinity of,
the point x0 we can approximate f by a low order polynomial in h, the displacement from x0. For example, in a
sufficiently small region around x0 we can approximate f as

f (x0 +h)≈ f (x0)+ f ′(x0)h+
1
2

f ′′(x0)h2, (3.17)

52

or, more formally, as

f (x0 +h) = f (x0)+ f ′(x0)h+
1
2

f ′′(x0)h2 +O(h3), (3.18)

where O(h3) is a function of h that grows at least a fast as h3 does for large h.
A necessary requirement on f to allow us to expand it as in Equation (3.16) is that its derivatives of all orders

are continuous functions, but this is not sufficient in general. For a general function, even one with continuous
derivatives of all orders, the Taylor series may or may not converge for different values of x0 and ∆, and if it
converges it may not converge to the expected function value of f . The set of functions for which the Taylor
expansion is a correct representation of the function for all x0 and ∆ is referred to as analytic functions, and they
are defined simply as those functions for which the Taylor series converges to the function itself. This means that
the idea of Taylor series has to be used with some care, and should include an investigation of which x0 and ∆ that
make the Taylor series converge to f . The functions that are considered for a Taylor expansion do not have to be
analytic, it may be sufficient that the Taylor series converges to f in some interval to make it useful.

Taylor expansion of multi-variable functions

The concept of Taylor expansions can be extended to a function f : Rn→ R. Such a function can have a Taylor
expansion at the point x0 ∈ Rn in accordance with

f (x0 +h) = f (x0)+h> ∇ f (x0)︸ ︷︷ ︸
= gradient
of f at x0

+
1
2

h>H{ f}(x0)︸ ︷︷ ︸
= Hessian
of f at x0

h+O(‖h‖3) (3.19)

In the same way as for the one-variable Taylor expansion, for general values of x0 and h, the Taylor series in the
right-hand side of Equation (3.19) may converge to the expected value of f or not. The power series defined by
a Taylor series is unique: there cannot be two power series with distinct coefficients that converge to the same
function f .

3.3 Optimizing functions on Rn

Optimizing a function f : Rn → R implies finding its maximal or minimal value. The value of v for which f
is minimal (or maximal) is the minimizer (or maximizer) of f . In general such a point v is also referred to a the
optimizer or simply the optimum. In his case, we rely on the context to determine whether a particular optimization
problem means to find a minimum or a maximum.

In terms of notation, we write

fmin = min
v

f (v) and fmax = max
v

f (v), (3.20)

to denote that fmin is the minimal value of f , and that fmax is the maximal value of f , for all choices of v in the
domain of f . Furthermore, we write

vmin = argmin f (v) and vmax = argmax f (v), (3.21)

to denote that vmin is the minimizer of f and that vmax is the maximizer of f , i.e., f (vmin)= fmin and f (vmax)= fmax.
In some applications we are only interested in the optimizer of f , in some applications only in the optimal value
of f , and in some applications in both. Notice that some functions do not have a minimizer or maximizer and also
notice that a minimizer or maximizer need not be unique. In most practical applications, however, we consider
functions f for which existence and uniqueness of the relevant optimizer can be assumed. In particular we normally
need to assume that f can be differentiated with respect to its variables. It is often nor necessary that derivatives of
arbitrary orders are well-defined, but at lest of first order and sometimes also of second order, i.e., the gradient and
the Hessian of f .

In most practical cases, we often are interested in finding the global optimum of f , i.e., the maximal or minimal
value of f (v) for all v ∈ Rn. In the case that f is differentiable, the global optimum corresponds to a stationary
point, and finding the stationary points of f is, therefore, sometimes an initial step in the search for the global
optimum. This search, however, is complicated by two general observations.

53

First, the stationary points are determined from the condition ∇f = 0. This condition corresponds to n equations
in the n variables of f . By solving these equations for the unknown n-dimensional vector v, the variable of f , we
obtain the stationary points. In general, however, these equations can be very complicated so solve. For example,
there may be no closed form expression for the solutions and, instead, they have to be determined numerically
based on more or less heuristic methods. Only for special types of functions f , described in Section 3.3.3, can
∇f = 0 be solved in a simple manner in terms of linear equations.

Second, in general f may have several stationary points. Given that the Hessian at a stationary point is either
positive or negative definite, we can then at least be sure that the stationary points is a maximum or a minimum in
a local region around the point: it is a local optimum. This means that a stationary point v can be optimal relative
to a local neighborhood around v, but it does not necessarily mean that v is a global optimum. In order to establish
global optimality, therefore, we need to compare f for all local optima, and find which of them that gives the
maximal or minimal value of f .

In summary, these two observations imply that finding the global optimum of f can be a computationally
complex problem. Finding the stationary points can typically not be done by numerically solving ∇f = 0 for v.
Instead we have to use iterative methods that start with some initial solution v0 and, in each iteration, moves from
vk to vk+1 such that f (vk+1) < f (vk) when f is minimized (or f (vk+1) > f (vk) when f is maximized). This
iterative processing continues until, typically, the change in f is sufficiently small to allow us to believe that the
final vk is very close to a stationary point. If this is indeed the case, and if the stationary point is a global rather
than a local optimum, have typically have to remain as hypotheses. Such iterative optimization methods are often
referred to as non-linear optimization, and are not discussed here.

3.3.1 Constrained optimization and Lagrange’s method

In several applications where we want to optimize a function f : Rn→ R this is not done over all possible v ∈ Rn

but the search is instead restricted to a subset of Rn that can have a rather general shape. In the simplest case, such a
subset can be identified as those points v ∈Rn that satisfy c(v) = 0 for some function c : Rn→R. Such a function
is known as a constraint and if we optimize f over only v that satisfy the constraint, we are doing constrained
optimization.

In constrained optimization we cannot use the general approach for optimization described above, since its
stationary points may not satisfy the constraint. Instead we use Lagrange’s method for constrained optimization
where instead stationary points are defined as satisfying both

c(v) = 0, (3.22)
∇ f = λ ∇c. (3.23)

Here, λ ∈ R is a scalar that can be determined if necessary, it is often referred to as a Lagrange multiplier. Notice
that since we now have an additional equation in c(v) = 0, it makes sense to introduce another unknown variable λ

to the problem. In the same way as for unconstrained optimization, the stationarity of a point is merely a necessary
condition but, in general, it is not sufficient for optimality. The stationary points produced by Lagrange’s method
need to be further analyzed in order to determine, e.g., if they represent a local minimum or maximum. This,
however, will not be necessary for the investigations done in this presentation.

3.3.2 Gradient and Hessian of linear and quadratic forms

A particularly simple and practical case of optimization appears when f is a scalar product between the vector
variable and some constant vector a:

f1(v) = f1(v1, . . . ,vn) = v ·a =
n

∑
i=1

vi[a]i. (3.24)

or a quadratic form:

f2(v) = f2(v1, . . . ,vn) = v>M v =
n

∑
i, j=1

vi[M]i jv j. (3.25)

54

Both in the constrained and the unconstrained case are we interested in the gradient and the Hessian of f1 or f2.
Element k of the gradient of f1 is given as

[∇ f1]k =
∂

∂vk
f1 =

∂

∂vk

n

∑
i=1

vi[a]i =
n

∑
i=1

∂vi

∂vk
[a]i =

n

∑
i=1

δik[a]i = [a]k. (3.26)

This means that this gradient can be expressed more compactly as

∇ f1 = a. (3.27)

In a similar way, element k of the gradient of f2 is given as

[∇ f]k =
∂

∂vk
f =

d
dvk

n

∑
i, j=1

vi[M]i jv j =
n

∑
i, j=1

dvi

dvk
[M]i jv j +

n

∑
i, j=1

vi[M]i j
dv j

dvk
= (3.28)

=
n

∑
i, j=1

δik[M]i jv j +
n

∑
i, j=1

vi[M]i jδ jk =
n

∑
j=1

[M]k jv j +
n

∑
i=1

vi[M]ik = (3.29)

=
/

Change j to i in the first sum.
M is symmetric in second sum.

/
=

n

∑
j=1

[M]kivi +
n

∑
i=1

[M]kivi = 2
n

∑
i=1

[M]kivi. (3.30)

This means that this gradient can be expressed more compactly as

∇ f2 = 2 M v. (3.31)

Since ∇ f1 is a vector that does not depend on v, the Hessian of f1 vanishes. The Hessian of f2 is

H{ f2}= 2 M. (3.32)

With these results at hand, it is straight-forward to consider an expression like

f3(v) = ‖A v−b‖2 = (A v−b)>(A v−b) = v>A>A v−2 v>A b+b>b. (3.33)

As a function of v, it has been expanded into a sum of a quadratic form, a linear form, and a constant. The gradient
is therefore given as

∇ f3 = 2(A>Av−A b), (3.34)

and the corresponding Hessian is
H{ f3}= 2 A>A. (3.35)

Notice that the Hessian in this case is positive definite if A has full column rank, and positive semi-definite other-
wise. In the first case, it means that f always has a minimum for any v that solves Equation (3.34).

3.3.3 Optimization of a second order function
A particularly simple case of optimization appears if f is function of x∈Rn in terms of a second order polynomial:

f (x) = x>A x+x>b+ c, (3.36)

for A ∈ Sym(n), b ∈ Rn and c ∈ R. Additionally, we assume that A is either positive definite or negative definite
and, consequently, A is of full rank and has an inverse. The gradient of f is given as

∇ f = 2 A x+b, (3.37)

which means that any stationary point x0 must satisfy

2 A x0 +b = 0. (3.38)

The Hessian of f is 2 A, and implies that this stationary point is the global maximum of f if A is negative definite
and the global minimum of f if A is positive definite. This optimal value of f is reached at the unique point

x0 =−
1
2

A−1b. (3.39)

55

If A is indefinite and of full rank, x0 in Equation (3.39) is still a well-defined stationary point, but it represents a
saddle-point.

If A is either positive or negative semi-definite, or indefinite but not of full rank, at least one of its eigenvalues
is zero, and A does not have a well-defined inverse. In this case, the analysis depends also on b and the eigenspace
E0 consisting of all eigenvectors of A corresponding to eigenvalue 0. The conclusion is that we can determine a
stationary point of f if and only if b⊥ E0. Furthermore, if x0 is a stationary point, then so is x0+e0, where e0 ∈ E0.
Such an affine space of stationary points represents the global maximum of f if A is negative semi-definite and the
global minimum of f of A is positive semi-definite.

56

Index

Abelian group, 13
adjoint operators, 22
affine space, 33
algebraic multiplicity of eigenvalue, 29
analytic functions, 49
anti-symmetric linear transformation, 27
anti-symmetric matrix, 27
argmax, 49
argmin, 49
argument, 9
associative operation, 12, 13

basis, 17
canonical, 17
Cartesian, 36
ON, 18
orthogonal, 18
orthonormal, 18
subspace, 17

basis matrix, 28
bijective, 9

C, the set of complex numbers, 13
C−0, complex numbers exclusing zero, 13
canonical basis, 17
Cartesian basis, 36
Cartesian coordinates, 36
Cartesian product, 8
chain rule, 46, 48
characteristic polynomial, 29
chirality, 37
clockwise frames, 37
closed operation, 13
co-domain, 9
column space, 20
column vector, 20
commutative operation, 11, 13
commuting matrices, 32
complement, 10
complex numbers, C, 13
complex numbers, exclusing zero, C−0, 13
complex vector space, 15
constrained optimization, 50
constraint, 50
coordinate axes, 36
coordinate system, 36

coordinates, 17
Cartesian, 36

counter-clockwise frames, 37
cross product, 38
cut, 11

defective matrix, 29
derivative operator, 45
determinant, 24

of a 3×3 matrix, 39
of a diagonal matrix, 25
of a triangular matrix, 25

diagonal matrix, 21
determinant, 25
inverse, 26

diagonalizable matrix, 29
dimension of vector space, 17
domain, 9
dot product, 17

eigenspace, 28
eigensystem, 28
eigenvalue, 28

algebraic multiplicity, 29
geometric multiplicity, 29

eigenvalue decomposition, 29
eigenvector, 28
elliptic quadratic form, 31
embedding space, 15
equivalence classes, 12
equivalence relation, 12
Euclidean geometry, 34
Euclidean space, 34
EVD, 29
expansion of the identity, 30

field, 15
frame of reference, 36
Frobenius norm, 32
Frobenius scalar (or inner) product, 32
full column rank, 23
full rank matrix, 23
full row rank, 23
function, 9

general linear group, 13

57

general linear transformations, 27
geometric multiplicity of eigenvalue, 29
GL(n), 13, 27
global optimum, 49
gradient, 47
group, 13

Abelian, 13
axioms, 13
examples

general linear group, 13
GL(n), 13, 27
O(n), 14, 27
orthogonal group, 14, 27
SL(n), 13
SO(n), 14, 28
special linear group, 13
special orthogonal group, 14, 28

inverse, 13
non-Abelian, 13
subgroup, 13

group axioms, 13
group inverse, 13

handedness, 37
Hessian, 48
homogeneous linear equation, 40
hyperbolic quadratic form, 31

identity element, 12, 13
identity matrix, 24
image, 9
indefinite quadratic form, 31
index set, 10
inhomogeneous linear equation, 40
injective, 9
inner product, 17

Frobenius, 32
integers, Z, 13
intersection, 11
inverse, 12
inverse of a 3×3 matrix, 39
inverse of a diagonal matrix, 26
inverse of a matrix, 26
invertible, 9

Kronecker delta function, 24

Lagrange multiplier, 50
Lagrange’s method, 50
least squares problems, 41, 42
left triangular matrix, 21
left-handed basis, 38
linar span, 16
linear combination, 16
linear equation

homogeneous, 40
inhomogeneous, 40

linear mapping, 18
linear transformation, 18

anti-symmetric, 27
null space, 19
null vector, 19
range, 19
symmetric, 27

linearly dependent, 16
linearly independent, 16
local optimum, 50
lower triangular matrix, 21

mapping, 9
matrix, 20

anti-symmetric, 27
commuting, 32
defective, 29
determinant, 24
diagonal, 21
full column rank, 23
full rank, 23
full row rank, 23
identity, 24
inverse, 26
left triangular, 21
lower triangular, 21
orthogonal, 27
product, 20
rank, 23
rank deficient, 23
reshaping, 20
right triangular, 21
rotation, 28
skew-symmetric, 27
square, 24
symmetric, 27
trace, 24
transpose, 21
unit, 24
upper triangular, 21

matrix form, 21
matrix product, 20
maximizer, 49
membership function, 7
minimizer, 49

negative definite quadratic form, 31
negative semi-definite quadratic form, 31
neutral element, 13
non-Abelian group, 13
norm, 17

Frobenius, 32
triangle inequality, 17

58

normal equation, 43
normalized vector, 18
null space, 19
null vector, 19

O(n), 14, 27
ON-basis, 18
one-to-one, 9
onto, 9
optimizer, 49
optimum, 49
orthogonal basis, 18
orthogonal collection, 18
orthogonal complement, 18
orthogonal group, 14, 27
orthogonal matrix, 27
orthogonal projection, 31
orthogonal subspaces, 18
orthogonal vectors, 18
orthonormal basis, 18
outer product, 23

parabolic quadratic form, 31
partial derivatives, 47
positive definite quadratic form, 31
positive semi-definite quadratic form, 31
projection operator, 31
proper subset, 7
proper subspace, 15

Q, the set of rational numbers, 13
Q−0, rational numbers exclusing zero, 13
quadratic form, 31

elliptic, 31
hyperbolic, 31
indefinite, 31
negative definite, 31
negative semi-definite, 31
parabolic, 31
positive definite, 31
positive semi-definite, 31

R, the set of real numbers, 13
R−0, real numbers exclusing zero, 13
range, 19
rank deficient matrix, 23
rank of matrix, 23
rank-nullity theorem, 19
rational numbers, Q, 13
rational numbers, exclusing zero, Q−0, 13
real numbers, R, 13
real numbers, exclusing zero, R−0, 13
real vector space, 15
reference frame, 36
representative, 12

reshaping a matrix, 20
residual, 42
right triangular matrix, 21
right-hand rule, 39
right-handed basis, 38
rigid transformation, 37
Rn, 16
rotation matrix, 28
row space, 20
row vector, 20

saddle point, 48
saddle-point, 48
scalar product, 17

Frobenius, 32
scalar triple products, 39
sequence, 10
set, 7
skew-symmetric matrix, 27
SL(n), 13
Sn, 18
SO(n), 14, 28
so(n), 27
span, 16
special linear group, 13
special orthogonal group, 14, 28
spectral theorem, 30
square matrix, 24

characteristic polynomial, 29
diagonalizable, 29
eigenvalue decomposition, 29

stationary point, 46, 47
subgroup, 13
submatrix, 23
subset, 7
subspace, 15

orthogonal, 18
orthogonal complement, 18
proper, 15
trivial, 15

subspace basis, 17
surjective, 9
symmetric linear transformation, 27
symmetric matrix, 27
Sym(n), 27

Taylor expansion, 48
Taylor series, 48
total derivative, 48
trace of a matrix, 24
transpose of a matrix, 21
triangle inequality, 17
triangular matrix, 21

determinant, 25
trivial subspace, 15

59

union, 11
unit ball, 18
unit matrix, 24
unit sphere, 18
universe set, 8
upper triangular matrix, 21

variable, 9
vector, 15

normalized, 18
vector cross product, 38
vector space, 15

complex, 15
dimension, 17
proper subspace, 15
real, 15
subspace, 15
trivial subspace, 15
zero vector, 15

vectors
orthogonal, 18
orthogonal collection, 18

Z, the set of integers, 13
zero vector, 15

60

